MFEM
v3.3
Finite element discretization library
|
#include <bilininteg.hpp>
Public Member Functions | |
DGElasticityIntegrator (double alpha_, double kappa_) | |
DGElasticityIntegrator (Coefficient &lambda_, Coefficient &mu_, double alpha_, double kappa_) | |
virtual void | AssembleFaceMatrix (const FiniteElement &el1, const FiniteElement &el2, FaceElementTransformations &Trans, DenseMatrix &elmat) |
![]() | |
virtual void | AssembleElementMatrix (const FiniteElement &el, ElementTransformation &Trans, DenseMatrix &elmat) |
Given a particular Finite Element computes the element matrix elmat. More... | |
virtual void | AssembleElementMatrix2 (const FiniteElement &trial_fe, const FiniteElement &test_fe, ElementTransformation &Trans, DenseMatrix &elmat) |
virtual void | AssembleFaceMatrix (const FiniteElement &trial_face_fe, const FiniteElement &test_fe1, const FiniteElement &test_fe2, FaceElementTransformations &Trans, DenseMatrix &elmat) |
virtual void | AssembleElementVector (const FiniteElement &el, ElementTransformation &Tr, const Vector &elfun, Vector &elvect) |
Perform the local action of the BilinearFormIntegrator. More... | |
virtual void | AssembleElementGrad (const FiniteElement &el, ElementTransformation &Tr, const Vector &elfun, DenseMatrix &elmat) |
Assemble the local gradient matrix. More... | |
virtual void | ComputeElementFlux (const FiniteElement &el, ElementTransformation &Trans, Vector &u, const FiniteElement &fluxelem, Vector &flux, int with_coef=1) |
virtual double | ComputeFluxEnergy (const FiniteElement &fluxelem, ElementTransformation &Trans, Vector &flux, Vector *d_energy=NULL) |
void | SetIntRule (const IntegrationRule *ir) |
virtual | ~BilinearFormIntegrator () |
![]() | |
virtual double | GetElementEnergy (const FiniteElement &el, ElementTransformation &Tr, const Vector &elfun) |
Compute the local energy. More... | |
virtual | ~NonlinearFormIntegrator () |
Static Protected Member Functions | |
static void | AssembleBlock (const int dim, const int row_ndofs, const int col_ndofs, const int row_offset, const int col_offset, const double jmatcoef, const Vector &col_nL, const Vector &col_nM, const Vector &row_shape, const Vector &col_shape, const Vector &col_dshape_dnM, const DenseMatrix &col_dshape, DenseMatrix &elmat, DenseMatrix &jmat) |
Protected Attributes | |
Coefficient * | lambda |
Coefficient * | mu |
double | alpha |
double | kappa |
Vector | shape1 |
Vector | shape2 |
DenseMatrix | dshape1 |
DenseMatrix | dshape2 |
DenseMatrix | adjJ |
DenseMatrix | dshape1_ps |
DenseMatrix | dshape2_ps |
Vector | nor |
Vector | nL1 |
Vector | nL2 |
Vector | nM1 |
Vector | nM2 |
Vector | dshape1_dnM |
Vector | dshape2_dnM |
DenseMatrix | jmat |
![]() | |
const IntegrationRule * | IntRule |
Additional Inherited Members | |
![]() | |
BilinearFormIntegrator (const IntegrationRule *ir=NULL) | |
Integrator for the DG elasticity form, for the formulations see:
Peter Hansbo and Mats G. Larson, Discontinuous Galerkin and the Crouzeix-Raviart Element: Application to Elasticity, PREPRINT 2000-09, p.3
where , and
is a face which is either a boundary face
of an element
or an interior face
separating elements
and
.
In the bilinear form above is traction, and it's also
, where
is stress, and
is the unit normal vector w.r.t. to
.
In other words, we have
For isotropic media
where is identity matrix,
and
are Lame coefficients (see ElasticityIntegrator),
are the trial and test functions, respectively.
The parameters and
determine the DG method to use (when this integrator is added to the "broken" ElasticityIntegrator):
This is a 'Vector' integrator, i.e. defined for FE spaces using multiple copies of a scalar FE space.
Definition at line 2160 of file bilininteg.hpp.
|
inline |
Definition at line 2163 of file bilininteg.hpp.
|
inline |
Definition at line 2166 of file bilininteg.hpp.
|
staticprotected |
Definition at line 2601 of file bilininteg.cpp.
|
virtual |
Reimplemented from mfem::BilinearFormIntegrator.
Definition at line 2644 of file bilininteg.cpp.
|
protected |
Definition at line 2188 of file bilininteg.hpp.
|
protected |
Definition at line 2178 of file bilininteg.hpp.
|
protected |
Definition at line 2186 of file bilininteg.hpp.
|
protected |
Definition at line 2196 of file bilininteg.hpp.
|
protected |
Definition at line 2192 of file bilininteg.hpp.
|
protected |
Definition at line 2186 of file bilininteg.hpp.
|
protected |
Definition at line 2196 of file bilininteg.hpp.
|
protected |
Definition at line 2192 of file bilininteg.hpp.
|
protected |
Definition at line 2198 of file bilininteg.hpp.
|
protected |
Definition at line 2178 of file bilininteg.hpp.
|
protected |
Definition at line 2177 of file bilininteg.hpp.
|
protected |
Definition at line 2177 of file bilininteg.hpp.
|
protected |
Definition at line 2194 of file bilininteg.hpp.
|
protected |
Definition at line 2194 of file bilininteg.hpp.
|
protected |
Definition at line 2195 of file bilininteg.hpp.
|
protected |
Definition at line 2195 of file bilininteg.hpp.
|
protected |
Definition at line 2193 of file bilininteg.hpp.
|
protected |
Definition at line 2183 of file bilininteg.hpp.
|
protected |
Definition at line 2183 of file bilininteg.hpp.