|
| DGElasticityIntegrator (double alpha_, double kappa_) |
|
| DGElasticityIntegrator (Coefficient &lambda_, Coefficient &mu_, double alpha_, double kappa_) |
|
virtual void | AssembleFaceMatrix (const FiniteElement &el1, const FiniteElement &el2, FaceElementTransformations &Trans, DenseMatrix &elmat) |
|
virtual void | AssembleElementMatrix (const FiniteElement &el, ElementTransformation &Trans, DenseMatrix &elmat) |
| Given a particular Finite Element computes the element matrix elmat. More...
|
|
virtual void | AssembleElementMatrix2 (const FiniteElement &trial_fe, const FiniteElement &test_fe, ElementTransformation &Trans, DenseMatrix &elmat) |
|
virtual void | AssembleFaceMatrix (const FiniteElement &trial_face_fe, const FiniteElement &test_fe1, const FiniteElement &test_fe2, FaceElementTransformations &Trans, DenseMatrix &elmat) |
|
virtual void | AssembleElementVector (const FiniteElement &el, ElementTransformation &Tr, const Vector &elfun, Vector &elvect) |
| Perform the local action of the BilinearFormIntegrator. More...
|
|
virtual void | AssembleElementGrad (const FiniteElement &el, ElementTransformation &Tr, const Vector &elfun, DenseMatrix &elmat) |
| Assemble the local gradient matrix. More...
|
|
virtual void | ComputeElementFlux (const FiniteElement &el, ElementTransformation &Trans, Vector &u, const FiniteElement &fluxelem, Vector &flux, int with_coef=1) |
|
virtual double | ComputeFluxEnergy (const FiniteElement &fluxelem, ElementTransformation &Trans, Vector &flux, Vector *d_energy=NULL) |
|
void | SetIntRule (const IntegrationRule *ir) |
|
virtual | ~BilinearFormIntegrator () |
|
virtual double | GetElementEnergy (const FiniteElement &el, ElementTransformation &Tr, const Vector &elfun) |
| Compute the local energy. More...
|
|
virtual | ~NonlinearFormIntegrator () |
|
Integrator for the DG elasticity form, for the formulations see:
- PhD Thesis of Jonas De Basabe, High-Order Finite Element Methods for Seismic Wave Propagation, UT Austin, 2009, p. 23, and references therein
Peter Hansbo and Mats G. Larson, Discontinuous Galerkin and the Crouzeix-Raviart Element: Application to Elasticity, PREPRINT 2000-09, p.3
where , and is a face which is either a boundary face of an element or an interior face separating elements and .
In the bilinear form above is traction, and it's also , where is stress, and is the unit normal vector w.r.t. to .
In other words, we have
For isotropic media
where is identity matrix, and are Lame coefficients (see ElasticityIntegrator), are the trial and test functions, respectively.
The parameters and determine the DG method to use (when this integrator is added to the "broken" ElasticityIntegrator):
- IIPG, , C. Dawson, S. Sun, M. Wheeler, Compatible algorithms for coupled flow and transport, Comp. Meth. Appl. Mech. Eng., 193(23-26), 2565-2580, 2004.
- SIPG, , M. Grote, A. Schneebeli, D. Schotzau, Discontinuous Galerkin Finite Element Method for the Wave Equation, SINUM, 44(6), 2408-2431, 2006.
- NIPG, , B. Riviere, M. Wheeler, V. Girault, A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems, SINUM, 39(3), 902-931, 2001.
This is a 'Vector' integrator, i.e. defined for FE spaces using multiple copies of a scalar FE space.
Definition at line 2160 of file bilininteg.hpp.