|
MFEM v2.0
|
Class for refined trilinear FE on a hexahedron. More...
#include <fe.hpp>


Public Member Functions | |
| RefinedTriLinear3DFiniteElement () | |
| Construct a biquadratic FE on quadrilateral. | |
| virtual void | CalcShape (const IntegrationPoint &ip, Vector &shape) const |
| virtual void | CalcDShape (const IntegrationPoint &ip, DenseMatrix &dshape) const |
| RefinedTriLinear3DFiniteElement::RefinedTriLinear3DFiniteElement | ( | ) |
Construct a biquadratic FE on quadrilateral.
Definition at line 4084 of file fe.cpp.
References IntegrationRule::IntPoint(), FiniteElement::Nodes, IntegrationPoint::x, IntegrationPoint::y, and IntegrationPoint::z.
| void RefinedTriLinear3DFiniteElement::CalcDShape | ( | const IntegrationPoint & | ip, |
| DenseMatrix & | dshape | ||
| ) | const [virtual] |
virtual function which evaluates the values of all partial derivatives of all shape functions at a given point ip and stores them in the matrix dshape (Dof x Dim) (9 x 2) so that each row contains the derivatives of one shape function
Implements FiniteElement.
Definition at line 4262 of file fe.cpp.
References IntegrationPoint::x, IntegrationPoint::y, and IntegrationPoint::z.
| void RefinedTriLinear3DFiniteElement::CalcShape | ( | const IntegrationPoint & | ip, |
| Vector & | shape | ||
| ) | const [virtual] |
virtual function which evaluates the values of all shape functions at a given point ip and stores them in the vector shape of dimension Dof (9)
Implements FiniteElement.
Definition at line 4129 of file fe.cpp.
References IntegrationPoint::x, IntegrationPoint::y, and IntegrationPoint::z.
1.7.4