MFEM v2.0
|
Class for refined linear FE on tetrahedron. More...
#include <fe.hpp>
Public Member Functions | |
RefinedLinear3DFiniteElement () | |
Construct a quadratic FE on tetrahedron. | |
virtual void | CalcShape (const IntegrationPoint &ip, Vector &shape) const |
virtual void | CalcDShape (const IntegrationPoint &ip, DenseMatrix &dshape) const |
RefinedLinear3DFiniteElement::RefinedLinear3DFiniteElement | ( | ) |
Construct a quadratic FE on tetrahedron.
Definition at line 3745 of file fe.cpp.
References IntegrationRule::IntPoint(), FiniteElement::Nodes, IntegrationPoint::x, IntegrationPoint::y, and IntegrationPoint::z.
void RefinedLinear3DFiniteElement::CalcDShape | ( | const IntegrationPoint & | ip, |
DenseMatrix & | dshape | ||
) | const [virtual] |
pure virtual function which evaluates the values of all partial derivatives of all shape functions at a given point ip and stores them in the matrix dshape (Dof x Dim) so that each row contains the derivatives of one shape function
Implements FiniteElement.
Definition at line 3857 of file fe.cpp.
References IntegrationPoint::x, IntegrationPoint::y, and IntegrationPoint::z.
void RefinedLinear3DFiniteElement::CalcShape | ( | const IntegrationPoint & | ip, |
Vector & | shape | ||
) | const [virtual] |
pure virtual function which evaluates the values of all shape functions at a given point ip and stores them in the vector shape of dimension Dof
Implements FiniteElement.
Definition at line 3780 of file fe.cpp.
References IntegrationPoint::x, IntegrationPoint::y, and IntegrationPoint::z.