MFEM v2.0
Public Member Functions | Static Private Attributes
Nedelec1HexFiniteElement Class Reference

#include <fe.hpp>

Inheritance diagram for Nedelec1HexFiniteElement:
Inheritance graph
[legend]
Collaboration diagram for Nedelec1HexFiniteElement:
Collaboration graph
[legend]

List of all members.

Public Member Functions

 Nedelec1HexFiniteElement ()
virtual void CalcVShape (const IntegrationPoint &ip, DenseMatrix &shape) const
virtual void CalcVShape (ElementTransformation &Trans, DenseMatrix &shape) const
virtual void CalcCurlShape (const IntegrationPoint &ip, DenseMatrix &curl_shape) const
virtual void GetLocalInterpolation (ElementTransformation &Trans, DenseMatrix &I) const
virtual void Project (VectorCoefficient &vc, ElementTransformation &Trans, Vector &dofs) const

Static Private Attributes

static const double tk [12][3]

Detailed Description

Definition at line 1017 of file fe.hpp.


Constructor & Destructor Documentation

Nedelec1HexFiniteElement::Nedelec1HexFiniteElement ( )

Member Function Documentation

void Nedelec1HexFiniteElement::CalcCurlShape ( const IntegrationPoint ip,
DenseMatrix curl_shape 
) const [virtual]

pure virtual function which evaluates the values of the curl all shape functions at a given point ip and stores them in the matrix curl_shape (Dof x Dim) so that each row contains the curl of one shape function

Reimplemented from FiniteElement.

Definition at line 4528 of file fe.cpp.

References IntegrationPoint::x, IntegrationPoint::y, and IntegrationPoint::z.

virtual void Nedelec1HexFiniteElement::CalcVShape ( ElementTransformation Trans,
DenseMatrix shape 
) const [inline, virtual]

Reimplemented from FiniteElement.

Definition at line 1026 of file fe.hpp.

References VectorFiniteElement::CalcVShape_ND().

void Nedelec1HexFiniteElement::CalcVShape ( const IntegrationPoint ip,
DenseMatrix shape 
) const [virtual]

This virtual function evaluates the values of all components of all shape functions at the given IntegrationPoint. The result is stored in the DenseMatrix shape (Dof x Dim) so that each row contains the components of one shape function.

Reimplemented from FiniteElement.

Definition at line 4473 of file fe.cpp.

References IntegrationPoint::x, IntegrationPoint::y, and IntegrationPoint::z.

Referenced by GetLocalInterpolation().

void Nedelec1HexFiniteElement::GetLocalInterpolation ( ElementTransformation Trans,
DenseMatrix I 
) const [virtual]

Return the local interpolation matrix I (Dof x Dof) where the fine element is the image of the base geometry under the given transformation.

Reimplemented from FiniteElement.

Definition at line 4588 of file fe.cpp.

References CalcVShape(), FiniteElement::Dim, FiniteElement::Dof, IntegrationRule::IntPoint(), ElementTransformation::Jacobian(), mfem_error(), FiniteElement::Nodes, ElementTransformation::SetIntPoint(), tk, ElementTransformation::Transform(), VectorFiniteElement::vshape, IntegrationPoint::x, IntegrationPoint::y, and IntegrationPoint::z.

void Nedelec1HexFiniteElement::Project ( VectorCoefficient vc,
ElementTransformation Trans,
Vector dofs 
) const [virtual]

Given a vector coefficient and a transformation, compute its projection (approximation) in the local finite dimensional space in terms of the degrees of freedom. (VectorFiniteElements)

Reimplemented from FiniteElement.

Definition at line 4639 of file fe.cpp.

References VectorCoefficient::Eval(), IntegrationRule::IntPoint(), ElementTransformation::Jacobian(), FiniteElement::Nodes, ElementTransformation::SetIntPoint(), and tk.


Member Data Documentation

const double Nedelec1HexFiniteElement::tk [static, private]
Initial value:
{{1,0,0}, {0,1,0}, {1,0,0}, {0,1,0},
 {1,0,0}, {0,1,0}, {1,0,0}, {0,1,0},
 {0,0,1}, {0,0,1}, {0,0,1}, {0,0,1}}

Definition at line 1020 of file fe.hpp.

Referenced by GetLocalInterpolation(), and Project().


The documentation for this class was generated from the following files:
 All Classes Files Functions Variables Typedefs Enumerations Enumerator Friends Defines