63int main(
int argc,
char *argv[])
66 cali::ConfigManager mgr;
71 const char *mesh_file =
"../../data/star.mesh";
73 bool static_cond =
false;
75 const char *device_config =
"cpu";
76 bool visualization =
true;
77 const char* cali_config =
"runtime-report";
80 args.
AddOption(&mesh_file,
"-m",
"--mesh",
83 "Finite element order (polynomial degree) or -1 for"
84 " isoparametric space.");
85 args.
AddOption(&static_cond,
"-sc",
"--static-condensation",
"-no-sc",
86 "--no-static-condensation",
"Enable static condensation.");
87 args.
AddOption(&pa,
"-pa",
"--partial-assembly",
"-no-pa",
88 "--no-partial-assembly",
"Enable Partial Assembly.");
89 args.
AddOption(&device_config,
"-d",
"--device",
90 "Device configuration string, see Device::Configure().");
91 args.
AddOption(&visualization,
"-vis",
"--visualization",
"-no-vis",
93 "Enable or disable GLVis visualization.");
94 args.
AddOption(&cali_config,
"-p",
"--caliper",
95 "Caliper configuration string.");
107 Device device(device_config);
111 mgr.add(cali_config);
117 Mesh mesh(mesh_file, 1, 1);
126 (int)floor(log(50000./mesh.
GetNE())/log(2.)/
dim);
127 for (
int l = 0; l < ref_levels; l++)
147 cout <<
"Using isoparametric FEs: " << fec->
Name() << endl;
155 cout <<
"Number of finite element unknowns: "
173 MFEM_PERF_BEGIN(
"Set up the linear form");
178 MFEM_PERF_END(
"Set up the linear form");
189 MFEM_PERF_BEGIN(
"Set up the bilinear form");
191 if (pa) {
a.SetAssemblyLevel(AssemblyLevel::PARTIAL); }
198 if (static_cond) {
a.EnableStaticCondensation(); }
203 a.FormLinearSystem(ess_tdof_list, x,
b, A, X, B);
204 MFEM_PERF_END(
"Set up the bilinear form");
206 cout <<
"Size of linear system: " << A->
Height() << endl;
211 MFEM_PERF_SCOPE(
"Solve A X=B (FA)");
212#ifndef MFEM_USE_SUITESPARSE
215 PCG(*A, M, B, X, 1, 200, 1e-12, 0.0);
219 umf_solver.
Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_METIS;
221 umf_solver.
Mult(B, X);
226 MFEM_PERF_SCOPE(
"Solve A X=B (PA)");
230 PCG(*A, M, B, X, 1, 400, 1e-12, 0.0);
234 CG(*A, B, X, 1, 400, 1e-12, 0.0);
238 a.RecoverFEMSolution(X,
b, x);
242 MFEM_PERF_BEGIN(
"Save the results");
243 ofstream mesh_ofs(
"refined.mesh");
244 mesh_ofs.precision(8);
245 mesh.
Print(mesh_ofs);
246 ofstream sol_ofs(
"sol.gf");
247 sol_ofs.precision(8);
249 MFEM_PERF_END(
"Save the results");
256 sol_sock.precision(8);
257 sol_sock <<
"solution\n" << mesh << x << flush;
T Max() const
Find the maximal element in the array, using the comparison operator < for class T.
int Size() const
Return the logical size of the array.
A coefficient that is constant across space and time.
The MFEM Device class abstracts hardware devices such as GPUs, as well as programming models such as ...
void Print(std::ostream &os=mfem::out)
Print the configuration of the MFEM virtual device object.
Class for domain integration .
Collection of finite elements from the same family in multiple dimensions. This class is used to matc...
virtual const char * Name() const
Class FiniteElementSpace - responsible for providing FEM view of the mesh, mainly managing the set of...
virtual int GetTrueVSize() const
Return the number of vector true (conforming) dofs.
virtual void GetEssentialTrueDofs(const Array< int > &bdr_attr_is_ess, Array< int > &ess_tdof_list, int component=-1) const
Get a list of essential true dofs, ess_tdof_list, corresponding to the boundary attributes marked in ...
Data type for Gauss-Seidel smoother of sparse matrix.
Class for grid function - Vector with associated FE space.
virtual void Save(std::ostream &out) const
Save the GridFunction to an output stream.
Arbitrary order H1-conforming (continuous) finite elements.
Array< int > bdr_attributes
A list of all unique boundary attributes used by the Mesh.
virtual void Print(std::ostream &os=mfem::out, const std::string &comments="") const
Print the mesh to the given stream using the default MFEM mesh format.
int GetNE() const
Returns number of elements.
int Dimension() const
Dimension of the reference space used within the elements.
void GetNodes(Vector &node_coord) const
void UniformRefinement(int i, const DSTable &, int *, int *, int *)
Pointer to an Operator of a specified type.
Jacobi smoothing for a given bilinear form (no matrix necessary).
int Height() const
Get the height (size of output) of the Operator. Synonym with NumRows().
void Parse()
Parse the command-line options. Note that this function expects all the options provided through the ...
void PrintUsage(std::ostream &out) const
Print the usage message.
void PrintOptions(std::ostream &out) const
Print the options.
void AddOption(bool *var, const char *enable_short_name, const char *enable_long_name, const char *disable_short_name, const char *disable_long_name, const char *description, bool required=false)
Add a boolean option and set 'var' to receive the value. Enable/disable tags are used to set the bool...
bool Good() const
Return true if the command line options were parsed successfully.
Direct sparse solver using UMFPACK.
real_t Control[UMFPACK_CONTROL]
void SetOperator(const Operator &op) override
Factorize the given Operator op which must be a SparseMatrix.
void Mult(const Vector &b, Vector &x) const override
Direct solution of the linear system using UMFPACK.
void PCG(const Operator &A, Solver &B, const Vector &b, Vector &x, int print_iter, int max_num_iter, real_t RTOLERANCE, real_t ATOLERANCE)
Preconditioned conjugate gradient method. (tolerances are squared)
void CG(const Operator &A, const Vector &b, Vector &x, int print_iter, int max_num_iter, real_t RTOLERANCE, real_t ATOLERANCE)
Conjugate gradient method. (tolerances are squared)
bool UsesTensorBasis(const FiniteElementSpace &fes)
Return true if the mesh contains only one topology and the elements are tensor elements.