35int main(
int argc,
char *argv[])
42 bool always_snap =
false;
43 bool visualization = 1;
46 args.
AddOption(&elem_type,
"-e",
"--elem",
47 "Type of elements to use: 0 - triangles, 1 - quads.");
49 "Finite element order (polynomial degree).");
50 args.
AddOption(&ref_levels,
"-r",
"--refine",
51 "Number of times to refine the mesh uniformly.");
52 args.
AddOption(&amr,
"-amr",
"--refine-locally",
53 "Additional local (non-conforming) refinement:"
54 " 1 = refine around north pole, 2 = refine randomly.");
55 args.
AddOption(&visualization,
"-vis",
"--visualization",
"-no-vis",
57 "Enable or disable GLVis visualization.");
58 args.
AddOption(&always_snap,
"-snap",
"--always-snap",
"-no-snap",
60 "If true, snap nodes to the sphere initially and after each refinement "
61 "otherwise, snap only after the last refinement");
74 int Nvert = 8, Nelem = 6;
80 Mesh *mesh =
new Mesh(2, Nvert, Nelem, 0, 3);
86 { 1, 0, 0}, { 0, 1, 0}, {-1, 0, 0},
87 { 0, -1, 0}, { 0, 0, 1}, { 0, 0, -1}
89 const int tri_e[8][3] =
91 {0, 1, 4}, {1, 2, 4}, {2, 3, 4}, {3, 0, 4},
92 {1, 0, 5}, {2, 1, 5}, {3, 2, 5}, {0, 3, 5}
95 for (
int j = 0; j < Nvert; j++)
99 for (
int j = 0; j < Nelem; j++)
101 int attribute = j + 1;
108 const real_t quad_v[8][3] =
110 {-1, -1, -1}, {+1, -1, -1}, {+1, +1, -1}, {-1, +1, -1},
111 {-1, -1, +1}, {+1, -1, +1}, {+1, +1, +1}, {-1, +1, +1}
113 const int quad_e[6][4] =
115 {3, 2, 1, 0}, {0, 1, 5, 4}, {1, 2, 6, 5},
116 {2, 3, 7, 6}, {3, 0, 4, 7}, {4, 5, 6, 7}
119 for (
int j = 0; j < Nvert; j++)
123 for (
int j = 0; j < Nelem; j++)
125 int attribute = j + 1;
126 mesh->
AddQuad(quad_e[j], attribute);
137 for (
int l = 0; l <= ref_levels; l++)
145 if (always_snap || l == ref_levels)
153 Vertex target(0.0, 0.0, 1.0);
154 for (
int l = 0; l < 5; l++)
162 for (
int l = 0; l < 4; l++)
172 cout <<
"Number of unknowns: " << fespace->
GetTrueVSize() << endl;
201 a->FormLinearSystem(empty_tdof_list, x, *
b, A, X, B);
203#ifndef MFEM_USE_SUITESPARSE
207 PCG(A, M, B, X, 1, 200, 1e-12, 0.0);
211 umf_solver.
Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_METIS;
213 umf_solver.
Mult(B, X);
217 a->RecoverFEMSolution(X, *
b, x);
220 cout<<
"\nL2 norm of error: " << x.
ComputeL2Error(sol_coef) << endl;
225 ofstream mesh_ofs(
"sphere_refined.mesh");
226 mesh_ofs.precision(8);
227 mesh->
Print(mesh_ofs);
228 ofstream sol_ofs(
"sol.gf");
229 sol_ofs.precision(8);
239 sol_sock.precision(8);
240 sol_sock <<
"solution\n" << *mesh << x << flush;
254 real_t l2 = x(0)*x(0) + x(1)*x(1) + x(2)*x(2);
260 real_t l2 = x(0)*x(0) + x(1)*x(1) + x(2)*x(2);
261 return 7*x(0)*x(1)/l2;
268 for (
int i = 0; i <
nodes.FESpace()->GetNDofs(); i++)
272 node(d) =
nodes(
nodes.FESpace()->DofToVDof(i, d));
279 nodes(
nodes.FESpace()->DofToVDof(i, d)) = node(d);
286 nodes.GetTrueDofs(tnodes);
287 nodes.SetFromTrueDofs(tnodes);
A coefficient that is constant across space and time.
Class for domain integration .
Class FiniteElementSpace - responsible for providing FEM view of the mesh, mainly managing the set of...
virtual int GetTrueVSize() const
Return the number of vector true (conforming) dofs.
A general function coefficient.
Data type for Gauss-Seidel smoother of sparse matrix.
Class for grid function - Vector with associated FE space.
virtual void Save(std::ostream &out) const
Save the GridFunction to an output stream.
virtual real_t ComputeL2Error(Coefficient *exsol[], const IntegrationRule *irs[]=NULL, const Array< int > *elems=NULL) const
Returns ||exsol - u_h||_L2 for scalar or vector H1 or L2 elements.
Arbitrary order H1-conforming (continuous) finite elements.
int AddQuad(int v1, int v2, int v3, int v4, int attr=1)
Adds a quadrilateral to the mesh given by 4 vertices v1 through v4.
bool Nonconforming() const
Return a bool indicating whether this mesh is nonconforming.
int AddTriangle(int v1, int v2, int v3, int attr=1)
Adds a triangle to the mesh given by 3 vertices v1 through v3.
virtual void Print(std::ostream &os=mfem::out, const std::string &comments="") const
int AddVertex(real_t x, real_t y=0.0, real_t z=0.0)
int Dimension() const
Dimension of the reference space used within the elements.
void RandomRefinement(real_t prob, bool aniso=false, int nonconforming=-1, int nc_limit=0)
Refine each element with given probability. Uses GeneralRefinement.
void RefineAtVertex(const Vertex &vert, real_t eps=0.0, int nonconforming=-1)
Refine elements sharing the specified vertex. Uses GeneralRefinement.
void FinalizeQuadMesh(int generate_edges=0, int refine=0, bool fix_orientation=true)
Finalize the construction of a quadrilateral Mesh.
int SpaceDimension() const
Dimension of the physical space containing the mesh.
void GetNodes(Vector &node_coord) const
void FinalizeTriMesh(int generate_edges=0, int refine=0, bool fix_orientation=true)
Finalize the construction of a triangular Mesh.
virtual void SetNodalFESpace(FiniteElementSpace *nfes)
void UniformRefinement(int i, const DSTable &, int *, int *, int *)
void Parse()
Parse the command-line options. Note that this function expects all the options provided through the ...
void PrintUsage(std::ostream &out) const
Print the usage message.
void PrintOptions(std::ostream &out) const
Print the options.
void AddOption(bool *var, const char *enable_short_name, const char *enable_long_name, const char *disable_short_name, const char *disable_long_name, const char *description, bool required=false)
Add a boolean option and set 'var' to receive the value. Enable/disable tags are used to set the bool...
bool Good() const
Return true if the command line options were parsed successfully.
Direct sparse solver using UMFPACK.
real_t Control[UMFPACK_CONTROL]
void SetOperator(const Operator &op) override
Factorize the given Operator op which must be a SparseMatrix.
void Mult(const Vector &b, Vector &x) const override
Direct solution of the linear system using UMFPACK.
real_t Norml2() const
Returns the l2 norm of the vector.
void SnapNodes(Mesh &mesh)
real_t analytic_rhs(const Vector &x)
real_t analytic_solution(const Vector &x)
void PCG(const Operator &A, Solver &B, const Vector &b, Vector &x, int print_iter, int max_num_iter, real_t RTOLERANCE, real_t ATOLERANCE)
Preconditioned conjugate gradient method. (tolerances are squared)
std::array< int, NCMesh::MaxFaceNodes > nodes