MFEM v4.7.0
Finite element discretization library
Loading...
Searching...
No Matches
tmop_pa_w3_c0.cpp
Go to the documentation of this file.
1// Copyright (c) 2010-2024, Lawrence Livermore National Security, LLC. Produced
2// at the Lawrence Livermore National Laboratory. All Rights reserved. See files
3// LICENSE and NOTICE for details. LLNL-CODE-806117.
4//
5// This file is part of the MFEM library. For more information and source code
6// availability visit https://mfem.org.
7//
8// MFEM is free software; you can redistribute it and/or modify it under the
9// terms of the BSD-3 license. We welcome feedback and contributions, see file
10// CONTRIBUTING.md for details.
11
12#include "../tmop.hpp"
13#include "tmop_pa.hpp"
14#include "../linearform.hpp"
17
18namespace mfem
19{
20
22 const real_t lim_normal,
23 const Vector &lim_dist,
24 const Vector &c0_,
25 const int NE,
26 const DenseTensor &j_,
27 const Array<real_t> &w_,
28 const Array<real_t> &b_,
29 const Array<real_t> &bld_,
30 const Vector &x0_,
31 const Vector &x1_,
32 const Vector &ones,
33 Vector &energy,
34 const bool exp_lim,
35 const int d1d,
36 const int q1d)
37{
38 const bool const_c0 = c0_.Size() == 1;
39
40 constexpr int DIM = 3;
41 const int D1D = T_D1D ? T_D1D : d1d;
42 const int Q1D = T_Q1D ? T_Q1D : q1d;
43
44 const auto C0 = const_c0 ?
45 Reshape(c0_.Read(), 1, 1, 1, 1) :
46 Reshape(c0_.Read(), Q1D, Q1D, Q1D, NE);
47 const auto LD = Reshape(lim_dist.Read(), D1D, D1D, D1D, NE);
48 const auto J = Reshape(j_.Read(), DIM, DIM, Q1D, Q1D, Q1D, NE);
49 const auto b = Reshape(b_.Read(), Q1D, D1D);
50 const auto bld = Reshape(bld_.Read(), Q1D, D1D);
51 const auto W = Reshape(w_.Read(), Q1D, Q1D, Q1D);
52 const auto X0 = Reshape(x0_.Read(), D1D, D1D, D1D, DIM, NE);
53 const auto X1 = Reshape(x1_.Read(), D1D, D1D, D1D, DIM, NE);
54
55 auto E = Reshape(energy.Write(), Q1D, Q1D, Q1D, NE);
56
57 mfem::forall_3D(NE, Q1D, Q1D, Q1D, [=] MFEM_HOST_DEVICE (int e)
58 {
59 const int D1D = T_D1D ? T_D1D : d1d;
60 const int Q1D = T_Q1D ? T_Q1D : q1d;
61 constexpr int MQ1 = T_Q1D ? T_Q1D : T_MAX;
62 constexpr int MD1 = T_D1D ? T_D1D : T_MAX;
63 constexpr int MDQ = (MQ1 > MD1) ? MQ1 : MD1;
64
65 MFEM_SHARED real_t B[MQ1*MD1];
66 MFEM_SHARED real_t sBLD[MQ1*MD1];
67 kernels::internal::LoadB<MD1,MQ1>(D1D,Q1D,bld,sBLD);
68 ConstDeviceMatrix BLD(sBLD, D1D, Q1D);
69
70 MFEM_SHARED real_t sm0[MDQ*MDQ*MDQ];
71 MFEM_SHARED real_t sm1[MDQ*MDQ*MDQ];
72 DeviceCube DDD(sm0, MD1,MD1,MD1);
73 DeviceCube DDQ(sm1, MD1,MD1,MQ1);
74 DeviceCube DQQ(sm0, MD1,MQ1,MQ1);
75 DeviceCube QQQ(sm1, MQ1,MQ1,MQ1);
76
77 MFEM_SHARED real_t DDD0[3][MD1*MD1*MD1];
78 MFEM_SHARED real_t DDQ0[3][MD1*MD1*MQ1];
79 MFEM_SHARED real_t DQQ0[3][MD1*MQ1*MQ1];
80 MFEM_SHARED real_t QQQ0[3][MQ1*MQ1*MQ1];
81
82 MFEM_SHARED real_t DDD1[3][MD1*MD1*MD1];
83 MFEM_SHARED real_t DDQ1[3][MD1*MD1*MQ1];
84 MFEM_SHARED real_t DQQ1[3][MD1*MQ1*MQ1];
85 MFEM_SHARED real_t QQQ1[3][MQ1*MQ1*MQ1];
86
87 kernels::internal::LoadX(e,D1D,LD,DDD);
88 kernels::internal::LoadX<MD1>(e,D1D,X0,DDD0);
89 kernels::internal::LoadX<MD1>(e,D1D,X1,DDD1);
90
91 kernels::internal::LoadB<MD1,MQ1>(D1D,Q1D,b,B);
92
93 kernels::internal::EvalX(D1D,Q1D,BLD,DDD,DDQ);
94 kernels::internal::EvalY(D1D,Q1D,BLD,DDQ,DQQ);
95 kernels::internal::EvalZ(D1D,Q1D,BLD,DQQ,QQQ);
96
97 kernels::internal::EvalX<MD1,MQ1>(D1D,Q1D,B,DDD0,DDQ0);
98 kernels::internal::EvalY<MD1,MQ1>(D1D,Q1D,B,DDQ0,DQQ0);
99 kernels::internal::EvalZ<MD1,MQ1>(D1D,Q1D,B,DQQ0,QQQ0);
100
101 kernels::internal::EvalX<MD1,MQ1>(D1D,Q1D,B,DDD1,DDQ1);
102 kernels::internal::EvalY<MD1,MQ1>(D1D,Q1D,B,DDQ1,DQQ1);
103 kernels::internal::EvalZ<MD1,MQ1>(D1D,Q1D,B,DQQ1,QQQ1);
104
105 MFEM_FOREACH_THREAD(qz,z,Q1D)
106 {
107 MFEM_FOREACH_THREAD(qy,y,Q1D)
108 {
109 MFEM_FOREACH_THREAD(qx,x,Q1D)
110 {
111 real_t D, p0[3], p1[3];
112 const real_t *Jtr = &J(0,0,qx,qy,qz,e);
113 const real_t detJtr = kernels::Det<3>(Jtr);
114 const real_t weight = W(qx,qy,qz) * detJtr;
115 const real_t coeff0 = const_c0 ? C0(0,0,0,0) : C0(qx,qy,qz,e);
116
117 kernels::internal::PullEval(qx,qy,qz,QQQ,D);
118 kernels::internal::PullEval<MQ1>(Q1D,qx,qy,qz,QQQ0,p0);
119 kernels::internal::PullEval<MQ1>(Q1D,qx,qy,qz,QQQ1,p1);
120
121 const real_t dist = D; // GetValues, default comp set to 0
122 real_t id2 = 0.0;
123 real_t dsq = 0.0;
124 if (!exp_lim)
125 {
126 id2 = 0.5 / (dist*dist);
127 dsq = kernels::DistanceSquared<3>(p1,p0) * id2;
128 E(qx,qy,qz,e) = weight * lim_normal * dsq * coeff0;
129 }
130 else
131 {
132 id2 = 1.0 / (dist*dist);
133 dsq = kernels::DistanceSquared<3>(p1,p0) * id2;
134 E(qx,qy,qz,e) = weight * lim_normal * exp(10.0*(dsq-1.0)) * coeff0;
135 }
136 }
137 }
138 }
139 });
140 return energy * ones;
141}
142
144{
145 const int N = PA.ne;
146 const int D1D = PA.maps->ndof;
147 const int Q1D = PA.maps->nqpt;
148 const int id = (D1D << 4 ) | Q1D;
149 const real_t ln = lim_normal;
150 const Vector &LD = PA.LD;
151 const DenseTensor &J = PA.Jtr;
152 const Array<real_t> &W = PA.ir->GetWeights();
153 const Array<real_t> &B = PA.maps->B;
154 const Array<real_t> &BLD = PA.maps_lim->B;
155 MFEM_VERIFY(PA.maps_lim->ndof == D1D, "");
156 MFEM_VERIFY(PA.maps_lim->nqpt == Q1D, "");
157 const Vector &X0 = PA.X0;
158 const Vector &C0 = PA.C0;
159 const Vector &O = PA.O;
160 Vector &E = PA.E;
161
162 auto el = dynamic_cast<TMOP_ExponentialLimiter *>(lim_func);
163 const bool exp_lim = (el) ? true : false;
164
165 MFEM_LAUNCH_TMOP_KERNEL(EnergyPA_C0_3D,id,ln,LD,C0,N,J,W,B,BLD,X0,X,O,E,
166 exp_lim);
167}
168
169} // namespace mfem
const T * Read(bool on_dev=true) const
Shortcut for mfem::Read(a.GetMemory(), a.Size(), on_dev).
Definition array.hpp:317
Rank 3 tensor (array of matrices)
const real_t * Read(bool on_dev=true) const
Shortcut for mfem::Read( GetMemory(), TotalSize(), on_dev).
A basic generic Tensor class, appropriate for use on the GPU.
Definition dtensor.hpp:82
Exponential limiter function in TMOP_Integrator.
Definition tmop.hpp:1224
TMOP_LimiterFunction * lim_func
Definition tmop.hpp:1765
real_t GetLocalStateEnergyPA_C0_3D(const Vector &) const
struct mfem::TMOP_Integrator::@23 PA
Vector data type.
Definition vector.hpp:80
virtual const real_t * Read(bool on_dev=true) const
Shortcut for mfem::Read(vec.GetMemory(), vec.Size(), on_dev).
Definition vector.hpp:474
int Size() const
Returns the size of the vector.
Definition vector.hpp:218
virtual real_t * Write(bool on_dev=true)
Shortcut for mfem::Write(vec.GetMemory(), vec.Size(), on_dev).
Definition vector.hpp:482
real_t b
Definition lissajous.cpp:42
constexpr int DIM
MFEM_HOST_DEVICE real_t DistanceSquared(const real_t *x, const real_t *y)
Compute the square of the Euclidean distance to another vector.
Definition kernels.hpp:40
MFEM_HOST_DEVICE T Det(const T *data)
Compute the determinant of a square matrix of size dim with given data.
Definition kernels.hpp:237
MFEM_REGISTER_TMOP_KERNELS(void, DatcSize, const int NE, const int ncomp, const int sizeidx, const real_t input_min_size, const DenseMatrix &w_, const Array< real_t > &b_, const Vector &x_, const Vector &nc_reduce, DenseTensor &j_, const int d1d, const int q1d)
MFEM_HOST_DEVICE DeviceTensor< sizeof...(Dims), T > Reshape(T *ptr, Dims... dims)
Wrap a pointer as a DeviceTensor with automatically deduced template parameters.
Definition dtensor.hpp:131
void forall_3D(int N, int X, int Y, int Z, lambda &&body)
Definition forall.hpp:775
float real_t
Definition config.hpp:43