MFEM v4.7.0
Finite element discretization library
|
Go to the source code of this file.
Classes | |
class | Dist_Level_Set_Coefficient |
Level set coefficient: +1 inside the true domain, -1 outside. More... | |
class | Combo_Level_Set_Coefficient |
Combination of level sets: +1 inside the true domain, -1 outside. More... | |
class | Dist_Vector_Coefficient |
Distance vector to the zero level-set. More... | |
Functions | |
real_t | point_inside_trigon (const Vector px, Vector p1, Vector p2, Vector p3) |
real_t | doughnut_cheese (const Vector &coord) |
real_t | dist_value (const Vector &x, const int type) |
real_t | homogeneous (const Vector &x) |
Boundary conditions - Dirichlet. | |
real_t | dirichlet_velocity_xy_exponent (const Vector &x) |
real_t | dirichlet_velocity_xy_sinusoidal (const Vector &x) |
void | normal_vector_1 (const Vector &x, Vector &p) |
void | normal_vector_2 (const Vector &x, Vector &p) |
Normal vector for level_set_type = 7. Circle centered at [0.5 , 0.6]. | |
real_t | traction_xy_exponent (const Vector &x) |
Neumann condition for exponent based solution. | |
real_t | rhs_fun_circle (const Vector &x) |
f for the Poisson problem (-nabla^2 u = f). | |
real_t | rhs_fun_xy_exponent (const Vector &x) |
real_t | rhs_fun_xy_sinusoidal (const Vector &x) |
Definition at line 223 of file sbm_aux.hpp.
Definition at line 229 of file sbm_aux.hpp.
Analytic distance to the 0 level set. Positive value if the point is inside the domain, and negative value if outside.
Definition at line 56 of file sbm_aux.hpp.
Definition at line 32 of file sbm_aux.hpp.
Boundary conditions - Dirichlet.
Definition at line 218 of file sbm_aux.hpp.
Boundary conditions - Neumann Normal vector for level_set_type = 1. Circle centered at [0.5 , 0.5]
Definition at line 236 of file sbm_aux.hpp.
Normal vector for level_set_type = 7. Circle centered at [0.5 , 0.6].
Definition at line 246 of file sbm_aux.hpp.
Definition at line 17 of file sbm_aux.hpp.
f
for the Poisson problem (-nabla^2 u = f).
Definition at line 268 of file sbm_aux.hpp.
Definition at line 273 of file sbm_aux.hpp.
Definition at line 288 of file sbm_aux.hpp.
Neumann condition for exponent based solution.
Definition at line 256 of file sbm_aux.hpp.