MFEM  v4.6.0
Finite element discretization library
ex1p.cpp
Go to the documentation of this file.
1 // MFEM Example 1 - Parallel Version
2 // SuperLU Modification
3 //
4 // Compile with: make ex1p
5 //
6 // Sample runs: mpirun -np 4 ex1p -m ../../data/square-disc.mesh
7 // mpirun -np 4 ex1p -m ../../data/star.mesh
8 // mpirun -np 4 ex1p -m ../../data/star-mixed.mesh
9 // mpirun -np 4 ex1p -m ../../data/escher.mesh
10 // mpirun -np 4 ex1p -m ../../data/fichera.mesh
11 // mpirun -np 4 ex1p -m ../../data/fichera-mixed.mesh
12 // mpirun -np 4 ex1p -m ../../data/toroid-wedge.mesh
13 // mpirun -np 4 ex1p -m ../../data/periodic-annulus-sector.msh
14 // mpirun -np 4 ex1p -m ../../data/periodic-torus-sector.msh
15 // mpirun -np 4 ex1p -m ../../data/square-disc-p2.vtk -o 2
16 // mpirun -np 4 ex1p -m ../../data/square-disc-nurbs.mesh -o -1
17 // mpirun -np 4 ex1p -m ../../data/star-mixed-p2.mesh -o 2
18 // mpirun -np 4 ex1p -m ../../data/disc-nurbs.mesh -o -1
19 // mpirun -np 4 ex1p -m ../../data/pipe-nurbs.mesh -o -1
20 // mpirun -np 4 ex1p -m ../../data/ball-nurbs.mesh -o 2
21 // mpirun -np 4 ex1p -m ../../data/star-surf.mesh
22 // mpirun -np 4 ex1p -m ../../data/square-disc-surf.mesh
23 // mpirun -np 4 ex1p -m ../../data/inline-segment.mesh
24 // mpirun -np 4 ex1p -m ../../data/amr-quad.mesh
25 // mpirun -np 4 ex1p -m ../../data/amr-hex.mesh
26 // mpirun -np 4 ex1p -m ../../data/mobius-strip.mesh
27 //
28 // Description: This example code demonstrates the use of MFEM to define a
29 // simple finite element discretization of the Laplace problem
30 // -Delta u = 1 with homogeneous Dirichlet boundary conditions.
31 // Specifically, we discretize using a FE space of the specified
32 // order, or if order < 1 using an isoparametric/isogeometric
33 // space (i.e. quadratic for quadratic curvilinear mesh, NURBS for
34 // NURBS mesh, etc.)
35 //
36 // The example highlights the use of mesh refinement, finite
37 // element grid functions, as well as linear and bilinear forms
38 // corresponding to the left-hand side and right-hand side of the
39 // discrete linear system. We also cover the explicit elimination
40 // of essential boundary conditions, static condensation, and the
41 // optional connection to the GLVis tool for visualization.
42 
43 #include "mfem.hpp"
44 #include <fstream>
45 #include <iostream>
46 
47 #ifndef MFEM_USE_SUPERLU
48 #error This example requires that MFEM is built with MFEM_USE_SUPERLU=YES
49 #endif
50 
51 using namespace std;
52 using namespace mfem;
53 
54 int main(int argc, char *argv[])
55 {
56  // 1. Initialize MPI and HYPRE.
57  Mpi::Init(argc, argv);
58  int num_procs = Mpi::WorldSize();
59  int myid = Mpi::WorldRank();
60  Hypre::Init();
61 
62  // 2. Parse command-line options.
63  const char *mesh_file = "../../data/star.mesh";
64  int order = 1;
65  const char *device_config = "cpu";
66  bool visualization = true;
67  int slu_colperm = 4;
68  int slu_rowperm = 1;
69  int slu_iterref = 2;
70  int slu_npdep = 1;
71 
72  OptionsParser args(argc, argv);
73  args.AddOption(&mesh_file, "-m", "--mesh",
74  "Mesh file to use.");
75  args.AddOption(&order, "-o", "--order",
76  "Finite element order (polynomial degree) or -1 for"
77  " isoparametric space.");
78  args.AddOption(&device_config, "-d", "--device",
79  "Device configuration string, see Device::Configure().");
80  args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
81  "--no-visualization",
82  "Enable or disable GLVis visualization.");
83  args.AddOption(&slu_colperm, "-cp", "--colperm",
84  "SuperLU Column Permutation Method: 0-NATURAL, 1-MMD-ATA "
85  "2-MMD_AT_PLUS_A, 3-COLAMD, 4-METIS_AT_PLUS_A, 5-PARMETIS "
86  "6-ZOLTAN");
87  args.AddOption(&slu_rowperm, "-rp", "--rowperm",
88  "SuperLU Row Permutation Method: 0-NOROWPERM, 1-LargeDiag");
89  args.AddOption(&slu_iterref, "-ir", "--iterref",
90  "SuperLU Iterative Refinement: 0-NOREFINE, 1-Single, "
91  "2-Double, 3-Extra");
92  args.AddOption(&slu_npdep, "-npdep", "--npdepth",
93  "Depth of 3D parition for SuperLU (>= 7.2.0)");
94 
95  args.Parse();
96  if (!args.Good())
97  {
98  if (myid == 0)
99  {
100  args.PrintUsage(cout);
101  }
102  return 1;
103  }
104  if (myid == 0)
105  {
106  args.PrintOptions(cout);
107  }
108 
109  // 3. Enable hardware devices such as GPUs, and programming models such as
110  // CUDA, OCCA, RAJA and OpenMP based on command line options.
111  Device device(device_config);
112  if (myid == 0) { device.Print(); }
113 
114  // 4. Read the (serial) mesh from the given mesh file on all processors. We
115  // can handle triangular, quadrilateral, tetrahedral, hexahedral, surface
116  // and volume meshes with the same code.
117  Mesh mesh(mesh_file, 1, 1);
118  int dim = mesh.Dimension();
119 
120  // 5. Refine the serial mesh on all processors to increase the resolution. In
121  // this example we do 'ref_levels' of uniform refinement. We choose
122  // 'ref_levels' to be the largest number that gives a final mesh with no
123  // more than 1,000 elements.
124  {
125  int ref_levels =
126  (int)floor(log(1000./mesh.GetNE())/log(2.)/dim);
127  for (int l = 0; l < ref_levels; l++)
128  {
129  mesh.UniformRefinement();
130  }
131  }
132 
133  // 6. Define a parallel mesh by a partitioning of the serial mesh. Refine
134  // this mesh further in parallel to increase the resolution. Once the
135  // parallel mesh is defined, the serial mesh can be deleted.
136  ParMesh pmesh(MPI_COMM_WORLD, mesh);
137  mesh.Clear();
138  {
139  int par_ref_levels = 2;
140  for (int l = 0; l < par_ref_levels; l++)
141  {
142  pmesh.UniformRefinement();
143  }
144  }
145 
146  // 7. Define a parallel finite element space on the parallel mesh. Here we
147  // use continuous Lagrange finite elements of the specified order. If
148  // order < 1, we instead use an isoparametric/isogeometric space.
150  bool delete_fec;
151  if (order > 0)
152  {
153  fec = new H1_FECollection(order, dim);
154  delete_fec = true;
155  }
156  else if (pmesh.GetNodes())
157  {
158  fec = pmesh.GetNodes()->OwnFEC();
159  delete_fec = false;
160  if (myid == 0)
161  {
162  cout << "Using isoparametric FEs: " << fec->Name() << endl;
163  }
164  }
165  else
166  {
167  fec = new H1_FECollection(order = 1, dim);
168  delete_fec = true;
169  }
170  ParFiniteElementSpace fespace(&pmesh, fec);
171  HYPRE_BigInt size = fespace.GlobalTrueVSize();
172  if (myid == 0)
173  {
174  cout << "Number of finite element unknowns: " << size << endl;
175  }
176 
177  // 8. Determine the list of true (i.e. parallel conforming) essential
178  // boundary dofs. In this example, the boundary conditions are defined
179  // by marking all the boundary attributes from the mesh as essential
180  // (Dirichlet) and converting them to a list of true dofs.
181  Array<int> ess_tdof_list;
182  if (pmesh.bdr_attributes.Size())
183  {
184  Array<int> ess_bdr(pmesh.bdr_attributes.Max());
185  ess_bdr = 1;
186  fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
187  }
188 
189  // 9. Set up the parallel linear form b(.) which corresponds to the
190  // right-hand side of the FEM linear system, which in this case is
191  // (1,phi_i) where phi_i are the basis functions in fespace.
192  ParLinearForm b(&fespace);
193  ConstantCoefficient one(1.0);
194  b.AddDomainIntegrator(new DomainLFIntegrator(one));
195  b.Assemble();
196 
197  // 10. Define the solution vector x as a parallel finite element grid function
198  // corresponding to fespace. Initialize x with initial guess of zero,
199  // which satisfies the boundary conditions.
200  ParGridFunction x(&fespace);
201  x = 0.0;
202 
203  // 11. Set up the parallel bilinear form a(.,.) on the finite element space
204  // corresponding to the Laplacian operator -Delta, by adding the Diffusion
205  // domain integrator.
206  ParBilinearForm a(&fespace);
207  a.AddDomainIntegrator(new DiffusionIntegrator(one));
208 
209  // 12. Assemble the parallel bilinear form and the corresponding linear
210  // system, applying any necessary transformations such as: parallel
211  // assembly, eliminating boundary conditions, applying conforming
212  // constraints for non-conforming AMR, static condensation, etc.
213  a.Assemble();
214 
215  OperatorPtr A;
216  Vector B, X;
217  a.FormLinearSystem(ess_tdof_list, x, b, A, X, B);
218 
219  // 13. Solve the linear system A X = B utilizing SuperLU.
220  SuperLUSolver *superlu = new SuperLUSolver(MPI_COMM_WORLD, slu_npdep);
221  Operator *SLU_A = new SuperLURowLocMatrix(*A.As<HypreParMatrix>());
222  superlu->SetPrintStatistics(true);
223  superlu->SetSymmetricPattern(false);
224 
225  if (slu_colperm == 0)
226  {
228  }
229  else if (slu_colperm == 1)
230  {
232  }
233  else if (slu_colperm == 2)
234  {
236  }
237  else if (slu_colperm == 3)
238  {
240  }
241  else if (slu_colperm == 4)
242  {
244  }
245  else if (slu_colperm == 5)
246  {
248  }
249  else if (slu_colperm == 6)
250  {
252  }
253 
254  if (slu_rowperm == 0)
255  {
257  }
258  else if (slu_rowperm == 1)
259  {
260 #ifdef MFEM_USE_SUPERLU5
262 #else
264 #endif
265  }
266 
267  if (slu_iterref == 0)
268  {
270  }
271  else if (slu_iterref == 1)
272  {
274  }
275  else if (slu_iterref == 2)
276  {
278  }
279  else if (slu_iterref == 3)
280  {
282  }
283 
284  superlu->SetOperator(*SLU_A);
285  superlu->SetPrintStatistics(true);
286  superlu->Mult(B, X);
287 
288  delete superlu;
289  delete SLU_A;
290 
291  // 14. Recover the parallel grid function corresponding to X. This is the
292  // local finite element solution on each processor.
293  a.RecoverFEMSolution(X, b, x);
294 
295  // 15. Save the refined mesh and the solution in parallel. This output can
296  // be viewed later using GLVis: "glvis -np <np> -m mesh -g sol".
297  {
298  ostringstream mesh_name, sol_name;
299  mesh_name << "mesh." << setfill('0') << setw(6) << myid;
300  sol_name << "sol." << setfill('0') << setw(6) << myid;
301 
302  ofstream mesh_ofs(mesh_name.str().c_str());
303  mesh_ofs.precision(8);
304  pmesh.Print(mesh_ofs);
305 
306  ofstream sol_ofs(sol_name.str().c_str());
307  sol_ofs.precision(8);
308  x.Save(sol_ofs);
309  }
310 
311  // 16. Send the solution by socket to a GLVis server.
312  if (visualization)
313  {
314  char vishost[] = "localhost";
315  int visport = 19916;
316  socketstream sol_sock(vishost, visport);
317  sol_sock << "parallel " << num_procs << " " << myid << "\n";
318  sol_sock.precision(8);
319  sol_sock << "solution\n" << pmesh << x << flush;
320  }
321 
322  // 17. Free the used memory.
323  if (delete_fec)
324  {
325  delete fec;
326  }
327 
328  return 0;
329 }
void SetRowPermutation(superlu::RowPerm row_perm)
Definition: superlu.cpp:415
Class for domain integration L(v) := (f, v)
Definition: lininteg.hpp:108
virtual void GetEssentialTrueDofs(const Array< int > &bdr_attr_is_ess, Array< int > &ess_tdof_list, int component=-1)
Definition: pfespace.cpp:1031
int visport
A coefficient that is constant across space and time.
Definition: coefficient.hpp:84
void PrintOptions(std::ostream &out) const
Print the options.
Definition: optparser.cpp:331
int Dimension() const
Dimension of the reference space used within the elements.
Definition: mesh.hpp:1020
void PrintUsage(std::ostream &out) const
Print the usage message.
Definition: optparser.cpp:462
Pointer to an Operator of a specified type.
Definition: handle.hpp:33
T Max() const
Find the maximal element in the array, using the comparison operator < for class T.
Definition: array.cpp:68
void Print(std::ostream &out=mfem::out)
Print the configuration of the MFEM virtual device object.
Definition: device.cpp:279
bool Good() const
Return true if the command line options were parsed successfully.
Definition: optparser.hpp:159
Abstract parallel finite element space.
Definition: pfespace.hpp:28
STL namespace.
void SetSymmetricPattern(bool sym)
Definition: superlu.cpp:454
void Mult(const Vector &x, Vector &y) const
Operator application: y=A(x).
Definition: superlu.cpp:587
void SetOperator(const Operator &op)
Set/update the solver for the given operator.
Definition: superlu.cpp:475
Class for parallel linear form.
Definition: plinearform.hpp:26
void SetIterativeRefine(superlu::IterRefine iter_ref)
Definition: superlu.cpp:427
void Parse()
Parse the command-line options. Note that this function expects all the options provided through the ...
Definition: optparser.cpp:151
char vishost[]
void SetColumnPermutation(superlu::ColPerm col_perm)
Definition: superlu.cpp:399
double b
Definition: lissajous.cpp:42
void UniformRefinement(int i, const DSTable &, int *, int *, int *)
Definition: mesh.cpp:10232
virtual const char * Name() const
Definition: fe_coll.hpp:80
void SetPrintStatistics(bool print_stat)
Definition: superlu.cpp:385
HYPRE_BigInt GlobalTrueVSize() const
Definition: pfespace.hpp:281
Array< int > bdr_attributes
A list of all unique boundary attributes used by the Mesh.
Definition: mesh.hpp:275
Collection of finite elements from the same family in multiple dimensions. This class is used to matc...
Definition: fe_coll.hpp:26
void AddOption(bool *var, const char *enable_short_name, const char *enable_long_name, const char *disable_short_name, const char *disable_long_name, const char *description, bool required=false)
Add a boolean option and set &#39;var&#39; to receive the value. Enable/disable tags are used to set the bool...
Definition: optparser.hpp:82
HYPRE_Int HYPRE_BigInt
int main(int argc, char *argv[])
Definition: ex1p.cpp:69
virtual void Save(std::ostream &out) const
Definition: pgridfunc.cpp:909
int GetNE() const
Returns number of elements.
Definition: mesh.hpp:1086
double a
Definition: lissajous.cpp:41
OpType * As() const
Return the Operator pointer statically cast to a specified OpType. Similar to the method Get()...
Definition: handle.hpp:104
int dim
Definition: ex24.cpp:53
Class for parallel bilinear form.
int Size() const
Return the logical size of the array.
Definition: array.hpp:141
void Clear()
Clear the contents of the Mesh.
Definition: mesh.hpp:678
Vector data type.
Definition: vector.hpp:58
Arbitrary order H1-conforming (continuous) finite elements.
Definition: fe_coll.hpp:259
void GetNodes(Vector &node_coord) const
Definition: mesh.cpp:8302
void Print(std::ostream &out=mfem::out) const override
Definition: pmesh.cpp:4825
Class for parallel grid function.
Definition: pgridfunc.hpp:32
The MFEM Device class abstracts hardware devices such as GPUs, as well as programming models such as ...
Definition: device.hpp:121
Abstract operator.
Definition: operator.hpp:24
Wrapper for hypre&#39;s ParCSR matrix class.
Definition: hypre.hpp:343
Class for parallel meshes.
Definition: pmesh.hpp:32