MFEM  v4.5.1
Finite element discretization library
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Pages
ex1p.cpp
Go to the documentation of this file.
1 // MFEM Example 1 - Parallel High-Performance Version
2 //
3 // Compile with: make ex1p
4 //
5 // Sample runs: mpirun -np 4 ex1p -m ../../data/fichera.mesh -perf -mf -pc lor
6 // mpirun -np 4 ex1p -m ../../data/fichera.mesh -perf -asm -pc ho
7 // mpirun -np 4 ex1p -m ../../data/fichera.mesh -perf -asm -pc ho -sc
8 // mpirun -np 4 ex1p -m ../../data/fichera.mesh -std -asm -pc ho
9 // mpirun -np 4 ex1p -m ../../data/fichera.mesh -std -asm -pc ho -sc
10 // mpirun -np 4 ex1p -m ../../data/amr-hex.mesh -perf -asm -pc ho -sc
11 // mpirun -np 4 ex1p -m ../../data/amr-hex.mesh -std -asm -pc ho -sc
12 // mpirun -np 4 ex1p -m ../../data/ball-nurbs.mesh -perf -asm -pc ho -sc
13 // mpirun -np 4 ex1p -m ../../data/ball-nurbs.mesh -std -asm -pc ho -sc
14 // mpirun -np 4 ex1p -m ../../data/pipe-nurbs.mesh -perf -mf -pc lor
15 // mpirun -np 4 ex1p -m ../../data/pipe-nurbs.mesh -std -asm -pc ho -sc
16 // mpirun -np 4 ex1p -m ../../data/star.mesh -perf -mf -pc lor
17 // mpirun -np 4 ex1p -m ../../data/star.mesh -perf -asm -pc ho
18 // mpirun -np 4 ex1p -m ../../data/star.mesh -perf -asm -pc ho -sc
19 // mpirun -np 4 ex1p -m ../../data/star.mesh -std -asm -pc ho
20 // mpirun -np 4 ex1p -m ../../data/star.mesh -std -asm -pc ho -sc
21 // mpirun -np 4 ex1p -m ../../data/amr-quad.mesh -perf -asm -pc ho -sc
22 // mpirun -np 4 ex1p -m ../../data/amr-quad.mesh -std -asm -pc ho -sc
23 // mpirun -np 4 ex1p -m ../../data/disc-nurbs.mesh -perf -asm -pc ho -sc
24 // mpirun -np 4 ex1p -m ../../data/disc-nurbs.mesh -std -asm -pc ho -sc
25 //
26 // Description: This example code demonstrates the use of MFEM to define a
27 // simple finite element discretization of the Laplace problem
28 // -Delta u = 1 with homogeneous Dirichlet boundary conditions.
29 // Specifically, we discretize using a FE space of the specified
30 // order, or if order < 1 using an isoparametric/isogeometric
31 // space (i.e. quadratic for quadratic curvilinear mesh, NURBS for
32 // NURBS mesh, etc.)
33 //
34 // The example highlights the use of mesh refinement, finite
35 // element grid functions, as well as linear and bilinear forms
36 // corresponding to the left-hand side and right-hand side of the
37 // discrete linear system. We also cover the explicit elimination
38 // of essential boundary conditions, static condensation, and the
39 // optional connection to the GLVis tool for visualization.
40 
41 #include "mfem-performance.hpp"
42 #include <fstream>
43 #include <iostream>
44 
45 using namespace std;
46 using namespace mfem;
47 
48 enum class PCType { NONE, LOR, HO };
49 
50 // Define template parameters for optimized build.
51 template <int dim> struct geom_t { };
52 template <>
53 struct geom_t<2> { static const Geometry::Type value = Geometry::SQUARE; };
54 template <>
55 struct geom_t<3> { static const Geometry::Type value = Geometry::CUBE; };
56 
57 const int mesh_p = 3; // mesh curvature (default: 3)
58 const int sol_p = 3; // solution order (default: 3)
59 
60 template <int dim>
61 struct ex1_t
62 {
63  static const Geometry::Type geom = geom_t<dim>::value;
64  static const int rdim = Geometry::Constants<geom>::Dimension;
65  static const int ir_order = 2*sol_p+rdim-1;
66 
67  // Static mesh type
68  using mesh_fe_t = H1_FiniteElement<geom,mesh_p>;
69  using mesh_fes_t = H1_FiniteElementSpace<mesh_fe_t>;
70  using mesh_t = TMesh<mesh_fes_t>;
71 
72  // Static solution finite element space type
73  using sol_fe_t = H1_FiniteElement<geom,sol_p>;
74  using sol_fes_t = H1_FiniteElementSpace<sol_fe_t>;
75 
76  // Static quadrature, coefficient and integrator types
77  using int_rule_t = TIntegrationRule<geom,ir_order>;
78  using coeff_t = TConstantCoefficient<>;
80 
82 
83  static int run(Mesh *mesh, int ser_ref_levels, int par_ref_levels, int order,
84  int basis, bool static_cond, PCType pc_choice, bool perf,
85  bool matrix_free, bool visualization);
86 };
87 
88 int main(int argc, char *argv[])
89 {
90  // 1. Initialize MPI and HYPRE.
91  Mpi::Init(argc, argv);
92  int myid = Mpi::WorldRank();
93  Hypre::Init();
94 
95  // 2. Parse command-line options.
96 #ifdef MFEM_HPC_EX1_2D
97  const char *mesh_file = "../../data/star.mesh";
98 #else
99  const char *mesh_file = "../../data/fichera.mesh";
100 #endif
101  int ser_ref_levels = -1;
102  int par_ref_levels = 1;
103  int order = sol_p;
104  const char *basis_type = "G"; // Gauss-Lobatto
105  bool static_cond = false;
106  const char *pc = "lor";
107  bool perf = true;
108  bool matrix_free = true;
109  bool visualization = 1;
110 
111  OptionsParser args(argc, argv);
112  args.AddOption(&mesh_file, "-m", "--mesh",
113  "Mesh file to use.");
114  args.AddOption(&ser_ref_levels, "-rs", "--refine-serial",
115  "Number of times to refine the mesh uniformly in serial;"
116  " -1 = auto: <= 10,000 elements.");
117  args.AddOption(&par_ref_levels, "-rp", "--refine-parallel",
118  "Number of times to refine the mesh uniformly in parallel.");
119  args.AddOption(&order, "-o", "--order",
120  "Finite element order (polynomial degree) or -1 for"
121  " isoparametric space.");
122  args.AddOption(&basis_type, "-b", "--basis-type",
123  "Basis: G - Gauss-Lobatto, P - Positive, U - Uniform");
124  args.AddOption(&perf, "-perf", "--hpc-version", "-std", "--standard-version",
125  "Enable high-performance, tensor-based, assembly/evaluation.");
126  args.AddOption(&matrix_free, "-mf", "--matrix-free", "-asm", "--assembly",
127  "Use matrix-free evaluation or efficient matrix assembly in "
128  "the high-performance version.");
129  args.AddOption(&pc, "-pc", "--preconditioner",
130  "Preconditioner: lor - low-order-refined (matrix-free) AMG, "
131  "ho - high-order (assembled) AMG, none.");
132  args.AddOption(&static_cond, "-sc", "--static-condensation", "-no-sc",
133  "--no-static-condensation", "Enable static condensation.");
134  args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
135  "--no-visualization",
136  "Enable or disable GLVis visualization.");
137  args.Parse();
138  if (!args.Good())
139  {
140  if (myid == 0)
141  {
142  args.PrintUsage(cout);
143  }
144  return 1;
145  }
146  if (static_cond && perf && matrix_free)
147  {
148  if (myid == 0)
149  {
150  cout << "\nStatic condensation can not be used with matrix-free"
151  " evaluation!\n" << endl;
152  }
153  return 2;
154  }
155  MFEM_VERIFY(perf || !matrix_free,
156  "--standard-version is not compatible with --matrix-free");
157  if (myid == 0)
158  {
159  args.PrintOptions(cout);
160  }
161 
162  PCType pc_choice;
163  if (!strcmp(pc, "ho")) { pc_choice = PCType::HO; }
164  else if (!strcmp(pc, "lor")) { pc_choice = PCType::LOR; }
165  else if (!strcmp(pc, "none")) { pc_choice = PCType::NONE; }
166  else
167  {
168  mfem_error("Invalid Preconditioner specified");
169  return 3;
170  }
171 
172  if (myid == 0)
173  {
174  cout << "\nMFEM SIMD width: " << MFEM_SIMD_BYTES/sizeof(double)
175  << " doubles\n" << endl;
176  }
177 
178  // See class BasisType in fem/fe_coll.hpp for available basis types
179  int basis = BasisType::GetType(basis_type[0]);
180  if (myid == 0)
181  {
182  cout << "Using " << BasisType::Name(basis) << " basis ..." << endl;
183  }
184 
185  // 3. Read the (serial) mesh from the given mesh file on all processors. We
186  // can handle triangular, quadrilateral, tetrahedral, hexahedral, surface
187  // and volume meshes with the same code.
188  Mesh *mesh = new Mesh(mesh_file, 1, 1);
189  int dim = mesh->Dimension();
190 
191  if (dim == 2)
192  {
193  return ex1_t<2>::run(mesh, ser_ref_levels, par_ref_levels, order, basis,
194  static_cond, pc_choice, perf, matrix_free,
195  visualization);
196  }
197  else if (dim == 3)
198  {
199  return ex1_t<3>::run(mesh, ser_ref_levels, par_ref_levels, order,
200  basis, static_cond, pc_choice, perf, matrix_free,
201  visualization);
202  }
203  else
204  {
205  MFEM_ABORT("Dimension must be 2 or 3.")
206  }
207 
208  return 0;
209 }
210 
211 template <int dim>
212 int ex1_t<dim>::run(Mesh *mesh, int ser_ref_levels, int par_ref_levels,
213  int order, int basis, bool static_cond, PCType pc_choice,
214  bool perf, bool matrix_free, bool visualization)
215 {
216  int num_procs, myid;
217  MPI_Comm_size(MPI_COMM_WORLD, &num_procs);
218  MPI_Comm_rank(MPI_COMM_WORLD, &myid);
219 
220  // 4. Check if the optimized version matches the given mesh
221  if (perf)
222  {
223  if (myid == 0)
224  {
225  cout << "High-performance version using integration rule with "
226  << int_rule_t::qpts << " points ..." << endl;
227  }
228  if (!mesh_t::MatchesGeometry(*mesh))
229  {
230  if (myid == 0)
231  {
232  cout << "The given mesh does not match the optimized 'geom' parameter.\n"
233  << "Recompile with suitable 'geom' value." << endl;
234  }
235  delete mesh;
236  return 4;
237  }
238  else if (!mesh_t::MatchesNodes(*mesh))
239  {
240  if (myid == 0)
241  {
242  cout << "Switching the mesh curvature to match the "
243  << "optimized value (order " << mesh_p << ") ..." << endl;
244  }
245  mesh->SetCurvature(mesh_p, false, -1, Ordering::byNODES);
246  }
247  }
248 
249  // 5. Refine the serial mesh on all processors to increase the resolution. In
250  // this example we do 'ref_levels' of uniform refinement. We choose
251  // 'ref_levels' to be the largest number that gives a final mesh with no
252  // more than 10,000 elements, or as specified on the command line with the
253  // option '--refine-serial'.
254  {
255  int ref_levels = (ser_ref_levels != -1) ? ser_ref_levels :
256  (int)floor(log(10000./mesh->GetNE())/log(2.)/dim);
257  for (int l = 0; l < ref_levels; l++)
258  {
259  mesh->UniformRefinement();
260  }
261  }
262  if (!perf && mesh->NURBSext)
263  {
264  const int new_mesh_p = std::min(sol_p, mesh_p);
265  if (myid == 0)
266  {
267  cout << "NURBS mesh: switching the mesh curvature to be "
268  << "min(sol_p, mesh_p) = " << new_mesh_p << " ..." << endl;
269  }
270  mesh->SetCurvature(new_mesh_p, false, -1, Ordering::byNODES);
271  }
272 
273  // 6. Define a parallel mesh by a partitioning of the serial mesh. Refine
274  // this mesh further in parallel to increase the resolution. Once the
275  // parallel mesh is defined, the serial mesh can be deleted.
276  ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh);
277  delete mesh;
278  {
279  for (int l = 0; l < par_ref_levels; l++)
280  {
281  pmesh->UniformRefinement();
282  }
283  }
284  if (pmesh->MeshGenerator() & 1) // simplex mesh
285  {
286  MFEM_VERIFY(pc_choice != PCType::LOR, "triangle and tet meshes do not "
287  "support the LOR preconditioner yet");
288  }
289 
290  // 7. Define a parallel finite element space on the parallel mesh. Here we
291  // use continuous Lagrange finite elements of the specified order. If
292  // order < 1, we instead use an isoparametric/isogeometric space.
294  if (order > 0)
295  {
296  fec = new H1_FECollection(order, dim, basis);
297  }
298  else if (pmesh->GetNodes())
299  {
300  fec = pmesh->GetNodes()->OwnFEC();
301  if (myid == 0)
302  {
303  cout << "Using isoparametric FEs: " << fec->Name() << endl;
304  }
305  }
306  else
307  {
308  fec = new H1_FECollection(order = 1, dim, basis);
309  }
310  ParFiniteElementSpace *fespace = new ParFiniteElementSpace(pmesh, fec);
311  HYPRE_BigInt size = fespace->GlobalTrueVSize();
312  if (myid == 0)
313  {
314  cout << "Number of finite element unknowns: " << size << endl;
315  }
316 
317  ParMesh pmesh_lor;
318  FiniteElementCollection *fec_lor = NULL;
319  ParFiniteElementSpace *fespace_lor = NULL;
320  if (pc_choice == PCType::LOR)
321  {
322  int basis_lor = basis;
323  if (basis == BasisType::Positive) { basis_lor=BasisType::ClosedUniform; }
324  pmesh_lor = ParMesh::MakeRefined(*pmesh, order, basis_lor);
325  fec_lor = new H1_FECollection(1, dim);
326  fespace_lor = new ParFiniteElementSpace(&pmesh_lor, fec_lor);
327  }
328 
329  // 8. Check if the optimized version matches the given space
330  if (perf && !sol_fes_t::Matches(*fespace))
331  {
332  if (myid == 0)
333  {
334  cout << "The given order does not match the optimized parameter.\n"
335  << "Recompile with suitable 'sol_p' value." << endl;
336  }
337  delete fespace;
338  delete fec;
339  delete mesh;
340  return 5;
341  }
342 
343  // 9. Determine the list of true (i.e. parallel conforming) essential
344  // boundary dofs. In this example, the boundary conditions are defined
345  // by marking all the boundary attributes from the mesh as essential
346  // (Dirichlet) and converting them to a list of true dofs.
347  Array<int> ess_tdof_list;
348  if (pmesh->bdr_attributes.Size())
349  {
350  Array<int> ess_bdr(pmesh->bdr_attributes.Max());
351  ess_bdr = 1;
352  fespace->GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
353  }
354 
355  // 10. Set up the parallel linear form b(.) which corresponds to the
356  // right-hand side of the FEM linear system, which in this case is
357  // (1,phi_i) where phi_i are the basis functions in fespace.
358  ParLinearForm *b = new ParLinearForm(fespace);
359  ConstantCoefficient one(1.0);
361  b->Assemble();
362 
363  // 11. Define the solution vector x as a parallel finite element grid
364  // function corresponding to fespace. Initialize x with initial guess of
365  // zero, which satisfies the boundary conditions.
366  ParGridFunction x(fespace);
367  x = 0.0;
368 
369  // 12. Set up the parallel bilinear form a(.,.) on the finite element space
370  // that will hold the matrix corresponding to the Laplacian operator.
371  ParBilinearForm *a = new ParBilinearForm(fespace);
372  ParBilinearForm *a_pc = NULL;
373  if (pc_choice == PCType::LOR) { a_pc = new ParBilinearForm(fespace_lor); }
374  if (pc_choice == PCType::HO) { a_pc = new ParBilinearForm(fespace); }
375 
376  // 13. Assemble the parallel bilinear form and the corresponding linear
377  // system, applying any necessary transformations such as: parallel
378  // assembly, eliminating boundary conditions, applying conforming
379  // constraints for non-conforming AMR, static condensation, etc.
380  if (static_cond)
381  {
383  MFEM_VERIFY(pc_choice != PCType::LOR,
384  "cannot use LOR preconditioner with static condensation");
385  }
386 
387  if (myid == 0)
388  {
389  cout << "Assembling the matrix ..." << flush;
390  }
391  tic_toc.Clear();
392  tic_toc.Start();
393  // Pre-allocate sparsity assuming dense element matrices
395 
396  HPCBilinearForm *a_hpc = NULL;
397  Operator *a_oper = NULL;
398 
399  if (!perf)
400  {
401  // Standard assembly using a diffusion domain integrator
403  a->Assemble();
404  }
405  else
406  {
407  // High-performance assembly/evaluation using the templated operator type
408  a_hpc = new HPCBilinearForm(integ_t(coeff_t(1.0)), *fespace);
409  if (matrix_free)
410  {
411  a_hpc->Assemble(); // partial assembly
412  }
413  else
414  {
415  a_hpc->AssembleBilinearForm(*a); // full matrix assembly
416  }
417  }
418  tic_toc.Stop();
419  if (myid == 0)
420  {
421  cout << " done, " << tic_toc.RealTime() << "s." << endl;
422  }
423 
424  // 14. Define and apply a parallel PCG solver for AX=B with the BoomerAMG
425  // preconditioner from hypre.
426 
427  // Setup the operator matrix (if applicable)
428  HypreParMatrix A;
429  Vector B, X;
430  if (perf && matrix_free)
431  {
432  a_hpc->FormLinearSystem(ess_tdof_list, x, *b, a_oper, X, B);
433  HYPRE_BigInt glob_size = fespace->GlobalTrueVSize();
434  if (myid == 0)
435  {
436  cout << "Size of linear system: " << glob_size << endl;
437  }
438  }
439  else
440  {
441  a->FormLinearSystem(ess_tdof_list, x, *b, A, X, B);
442  HYPRE_BigInt glob_size = A.GetGlobalNumRows();
443  if (myid == 0)
444  {
445  cout << "Size of linear system: " << glob_size << endl;
446  }
447  a_oper = &A;
448  }
449 
450  // Setup the matrix used for preconditioning
451  if (myid == 0)
452  {
453  cout << "Assembling the preconditioning matrix ..." << flush;
454  }
455  tic_toc.Clear();
456  tic_toc.Start();
457 
458  HypreParMatrix A_pc;
459  if (pc_choice == PCType::LOR)
460  {
461  // TODO: assemble the LOR matrix using the performance code
463  a_pc->UsePrecomputedSparsity();
464  a_pc->Assemble();
465  a_pc->FormSystemMatrix(ess_tdof_list, A_pc);
466  }
467  else if (pc_choice == PCType::HO)
468  {
469  if (!matrix_free)
470  {
471  A_pc.MakeRef(A); // matrix already assembled, reuse it
472  }
473  else
474  {
475  a_pc->UsePrecomputedSparsity();
476  a_hpc->AssembleBilinearForm(*a_pc);
477  a_pc->FormSystemMatrix(ess_tdof_list, A_pc);
478  }
479  }
480  tic_toc.Stop();
481  if (myid == 0)
482  {
483  cout << " done, " << tic_toc.RealTime() << "s." << endl;
484  }
485 
486  // Solve with CG or PCG, depending if the matrix A_pc is available
487  CGSolver *pcg;
488  pcg = new CGSolver(MPI_COMM_WORLD);
489  pcg->SetRelTol(1e-6);
490  pcg->SetMaxIter(500);
491  pcg->SetPrintLevel(1);
492 
493  HypreSolver *amg = NULL;
494 
495  pcg->SetOperator(*a_oper);
496  if (pc_choice != PCType::NONE)
497  {
498  amg = new HypreBoomerAMG(A_pc);
499  pcg->SetPreconditioner(*amg);
500  }
501 
502  tic_toc.Clear();
503  tic_toc.Start();
504 
505  pcg->Mult(B, X);
506 
507  tic_toc.Stop();
508  delete amg;
509 
510  if (myid == 0)
511  {
512  // Note: In the pcg algorithm, the number of operator Mult() calls is
513  // N_iter and the number of preconditioner Mult() calls is N_iter+1.
514  cout << "Time per CG step: "
515  << tic_toc.RealTime() / pcg->GetNumIterations() << "s." << endl;
516  }
517 
518  // 15. Recover the parallel grid function corresponding to X. This is the
519  // local finite element solution on each processor.
520  if (perf && matrix_free)
521  {
522  a_hpc->RecoverFEMSolution(X, *b, x);
523  }
524  else
525  {
526  a->RecoverFEMSolution(X, *b, x);
527  }
528 
529  // 16. Save the refined mesh and the solution in parallel. This output can
530  // be viewed later using GLVis: "glvis -np <np> -m mesh -g sol".
531  {
532  ostringstream mesh_name, sol_name;
533  mesh_name << "mesh." << setfill('0') << setw(6) << myid;
534  sol_name << "sol." << setfill('0') << setw(6) << myid;
535 
536  ofstream mesh_ofs(mesh_name.str().c_str());
537  mesh_ofs.precision(8);
538  pmesh->Print(mesh_ofs);
539 
540  ofstream sol_ofs(sol_name.str().c_str());
541  sol_ofs.precision(8);
542  x.Save(sol_ofs);
543  }
544 
545  // 17. Send the solution by socket to a GLVis server.
546  if (visualization)
547  {
548  char vishost[] = "localhost";
549  int visport = 19916;
550  socketstream sol_sock(vishost, visport);
551  sol_sock << "parallel " << num_procs << " " << myid << "\n";
552  sol_sock.precision(8);
553  sol_sock << "solution\n" << *pmesh << x << flush;
554  }
555 
556  // 18. Free the used memory.
557  delete a;
558  delete a_hpc;
559  if (a_oper != &A) { delete a_oper; }
560  delete a_pc;
561  delete b;
562  delete fespace;
563  delete fespace_lor;
564  delete fec_lor;
565  if (order > 0) { delete fec; }
566  delete pmesh;
567  delete pcg;
568 
569  return 0;
570 }
int Size() const
Return the logical size of the array.
Definition: array.hpp:138
Class for domain integration L(v) := (f, v)
Definition: lininteg.hpp:108
virtual void GetEssentialTrueDofs(const Array< int > &bdr_attr_is_ess, Array< int > &ess_tdof_list, int component=-1)
Definition: pfespace.cpp:1032
Templated bilinear form class, cf. bilinearform.?pp.
Conjugate gradient method.
Definition: solvers.hpp:465
int GetNumIterations() const
Definition: solvers.hpp:246
A coefficient that is constant across space and time.
Definition: coefficient.hpp:84
virtual void FormLinearSystem(const Array< int > &ess_tdof_list, Vector &x, Vector &b, OperatorHandle &A, Vector &X, Vector &B, int copy_interior=0)
Form the linear system A X = B, corresponding to this bilinear form and the linear form b(...
virtual void Mult(const Vector &b, Vector &x) const
Operator application: y=A(x).
Definition: solvers.cpp:711
void MakeRef(const HypreParMatrix &master)
Make this HypreParMatrix a reference to &#39;master&#39;.
Definition: hypre.cpp:1334
HYPRE_BigInt GlobalTrueVSize() const
Definition: pfespace.hpp:285
int GetNE() const
Returns number of elements.
Definition: mesh.hpp:923
StopWatch tic_toc
Definition: tic_toc.cpp:447
double RealTime()
Definition: tic_toc.cpp:426
Abstract parallel finite element space.
Definition: pfespace.hpp:28
PCType
Definition: ex1.cpp:48
The Integrator class combines a kernel and a coefficient.
Definition: tbilininteg.hpp:26
void Stop()
Stop the stopwatch.
Definition: tic_toc.cpp:416
The BoomerAMG solver in hypre.
Definition: hypre.hpp:1579
Class for parallel linear form.
Definition: plinearform.hpp:26
virtual void SetPrintLevel(int print_lvl)
Legacy method to set the level of verbosity of the solver output.
Definition: solvers.cpp:71
void Parse()
Parse the command-line options. Note that this function expects all the options provided through the ...
Definition: optparser.cpp:151
constexpr char vishost[]
void mfem_error(const char *msg)
Function called when an error is encountered. Used by the macros MFEM_ABORT, MFEM_ASSERT, MFEM_VERIFY.
Definition: error.cpp:154
void Assemble()
Assembles the ParLinearForm i.e. sums over all domain/bdr integrators.
Definition: plinearform.cpp:46
double b
Definition: lissajous.cpp:42
void UniformRefinement(int i, const DSTable &, int *, int *, int *)
Definition: mesh.cpp:9816
constexpr int visport
const int sol_p
Definition: ex1.cpp:58
void SetMaxIter(int max_it)
Definition: solvers.hpp:200
virtual void SetCurvature(int order, bool discont=false, int space_dim=-1, int ordering=1)
Definition: mesh.cpp:5343
int MeshGenerator()
Get the mesh generator/type.
Definition: mesh.hpp:916
T Max() const
Find the maximal element in the array, using the comparison operator &lt; for class T.
Definition: array.cpp:68
void Assemble(int skip_zeros=1)
Assemble the local matrix.
int Dimension() const
Definition: mesh.hpp:1006
void PrintUsage(std::ostream &out) const
Print the usage message.
Definition: optparser.cpp:454
void Start()
Start the stopwatch. The elapsed time is not cleared.
Definition: tic_toc.cpp:411
void AddDomainIntegrator(LinearFormIntegrator *lfi)
Adds new Domain Integrator. Assumes ownership of lfi.
Definition: linearform.cpp:41
Array< int > bdr_attributes
A list of all unique boundary attributes used by the Mesh.
Definition: mesh.hpp:270
void SetRelTol(double rtol)
Definition: solvers.hpp:198
void UsePrecomputedSparsity(int ps=1)
For scalar FE spaces, precompute the sparsity pattern of the matrix (assuming dense element matrices)...
Collection of finite elements from the same family in multiple dimensions. This class is used to matc...
Definition: fe_coll.hpp:26
void AddOption(bool *var, const char *enable_short_name, const char *enable_long_name, const char *disable_short_name, const char *disable_long_name, const char *description, bool required=false)
Add a boolean option and set &#39;var&#39; to receive the value. Enable/disable tags are used to set the bool...
Definition: optparser.hpp:82
HYPRE_Int HYPRE_BigInt
virtual void RecoverFEMSolution(const Vector &X, const Vector &b, Vector &x)
double a
Definition: lissajous.cpp:41
NURBSExtension * NURBSext
Optional NURBS mesh extension.
Definition: mesh.hpp:272
virtual void FormSystemMatrix(const Array< int > &ess_tdof_list, OperatorHandle &A)
Form the linear system matrix A, see FormLinearSystem() for details.
virtual const char * Name() const
Definition: fe_coll.hpp:65
HYPRE_BigInt GetGlobalNumRows() const
Return the global number of rows.
Definition: hypre.hpp:635
const int mesh_p
Definition: ex1.cpp:57
int dim
Definition: ex24.cpp:53
void AddDomainIntegrator(BilinearFormIntegrator *bfi)
Adds new Domain Integrator. Assumes ownership of bfi.
void PrintOptions(std::ostream &out) const
Print the options.
Definition: optparser.cpp:324
Class for parallel bilinear form.
Abstract class for hypre&#39;s solvers and preconditioners.
Definition: hypre.hpp:1092
virtual void SetOperator(const Operator &op)
Also calls SetOperator for the preconditioner if there is one.
Definition: solvers.hpp:479
Vector data type.
Definition: vector.hpp:60
void GetNodes(Vector &node_coord) const
Definition: mesh.cpp:7908
virtual void SetPreconditioner(Solver &pr)
This should be called before SetOperator.
Definition: solvers.cpp:173
Arbitrary order H1-conforming (continuous) finite elements.
Definition: fe_coll.hpp:220
void Print(std::ostream &out=mfem::out) const override
Definition: pmesh.cpp:4770
Class for parallel grid function.
Definition: pgridfunc.hpp:32
Abstract operator.
Definition: operator.hpp:24
Wrapper for hypre&#39;s ParCSR matrix class.
Definition: hypre.hpp:343
Class for parallel meshes.
Definition: pmesh.hpp:32
int main()
void Clear()
Clear the elapsed time on the stopwatch and restart it if it&#39;s running.
Definition: tic_toc.cpp:406
void EnableStaticCondensation()
Enable the use of static condensation. For details see the description for class StaticCondensation i...
bool Good() const
Return true if the command line options were parsed successfully.
Definition: optparser.hpp:150