113 #include "../common/mfem-common.hpp"
118 using namespace mfem;
121 int main(
int argc,
char *argv[])
124 const char *mesh_file =
"icf.mesh";
125 int mesh_poly_deg = 1;
130 double lim_const = 0.0;
131 double adapt_lim_const = 0.0;
132 double surface_fit_const = 0.0;
136 int solver_iter = 20;
137 double solver_rtol = 1e-10;
138 int solver_art_type = 0;
140 int max_lin_iter = 100;
141 bool move_bnd =
true;
143 bool hradaptivity =
false;
144 int h_metric_id = -1;
145 bool normalization =
false;
146 bool visualization =
true;
147 int verbosity_level = 0;
148 bool fdscheme =
false;
150 bool exactaction =
false;
151 const char *devopt =
"cpu";
155 bool surface_fit_adapt =
false;
156 double surface_fit_threshold = -10;
157 int mesh_node_ordering = 0;
158 int barrier_type = 0;
159 int worst_case_type = 0;
163 args.
AddOption(&mesh_file,
"-m",
"--mesh",
164 "Mesh file to use.");
165 args.
AddOption(&mesh_poly_deg,
"-o",
"--order",
166 "Polynomial degree of mesh finite element space.");
167 args.
AddOption(&rs_levels,
"-rs",
"--refine-serial",
168 "Number of times to refine the mesh uniformly in serial.");
169 args.
AddOption(&jitter,
"-ji",
"--jitter",
170 "Random perturbation scaling factor.");
171 args.
AddOption(&metric_id,
"-mid",
"--metric-id",
172 "Mesh optimization metric:\n\t"
174 "1 : |T|^2 -- 2D no type\n\t"
175 "2 : 0.5|T|^2/tau-1 -- 2D shape (condition number)\n\t"
176 "7 : |T-T^-t|^2 -- 2D shape+size\n\t"
177 "9 : tau*|T-T^-t|^2 -- 2D shape+size\n\t"
178 "14 : |T-I|^2 -- 2D shape+size+orientation\n\t"
179 "22 : 0.5(|T|^2-2*tau)/(tau-tau_0) -- 2D untangling\n\t"
180 "50 : 0.5|T^tT|^2/tau^2-1 -- 2D shape\n\t"
181 "55 : (tau-1)^2 -- 2D size\n\t"
182 "56 : 0.5(sqrt(tau)-1/sqrt(tau))^2 -- 2D size\n\t"
183 "58 : |T^tT|^2/(tau^2)-2*|T|^2/tau+2 -- 2D shape\n\t"
184 "77 : 0.5(tau-1/tau)^2 -- 2D size\n\t"
185 "80 : (1-gamma)mu_2 + gamma mu_77 -- 2D shape+size\n\t"
186 "85 : |T-|T|/sqrt(2)I|^2 -- 2D shape+orientation\n\t"
187 "98 : (1/tau)|T-I|^2 -- 2D shape+size+orientation\n\t"
190 "301: (|T||T^-1|)/3-1 -- 3D shape\n\t"
191 "302: (|T|^2|T^-1|^2)/9-1 -- 3D shape\n\t"
192 "303: (|T|^2)/3/tau^(2/3)-1 -- 3D shape\n\t"
193 "304: (|T|^3)/3^{3/2}/tau-1 -- 3D shape\n\t"
195 "313: (|T|^2)(tau-tau0)^(-2/3)/3 -- 3D untangling\n\t"
196 "315: (tau-1)^2 -- 3D no type\n\t"
197 "316: 0.5(sqrt(tau)-1/sqrt(tau))^2 -- 3D no type\n\t"
198 "321: |T-T^-t|^2 -- 3D shape+size\n\t"
199 "322: |T-adjT^-t|^2 -- 3D shape+size\n\t"
200 "323: |J|^3-3sqrt(3)ln(det(J))-3sqrt(3) -- 3D shape+size\n\t"
201 "328: (1-gamma) mu_301 + gamma mu_316 -- 3D shape+size\n\t"
202 "332: (1-gamma) mu_302 + gamma mu_315 -- 3D shape+size\n\t"
203 "333: (1-gamma) mu_302 + gamma mu_316 -- 3D shape+size\n\t"
204 "334: (1-gamma) mu_303 + gamma mu_316 -- 3D shape+size\n\t"
205 "347: (1-gamma) mu_304 + gamma mu_316 -- 3D shape+size\n\t"
207 "360: (|T|^3)/3^{3/2}-tau -- 3D shape\n\t"
209 "11 : (1/4*alpha)|A-(adjA)^T(W^TW)/omega|^2 -- 2D shape\n\t"
210 "36 : (1/alpha)|A-W|^2 -- 2D shape+size+orientation\n\t"
211 "107: (1/2*alpha)|A-|A|/|W|W|^2 -- 2D shape+orientation\n\t"
212 "126: (1-gamma)nu_11 + gamma*nu_14a -- 2D shape+size\n\t"
214 args.
AddOption(&target_id,
"-tid",
"--target-id",
215 "Target (ideal element) type:\n\t"
216 "1: Ideal shape, unit size\n\t"
217 "2: Ideal shape, equal size\n\t"
218 "3: Ideal shape, initial size\n\t"
219 "4: Given full analytic Jacobian (in physical space)\n\t"
220 "5: Ideal shape, given size (in physical space)");
221 args.
AddOption(&lim_const,
"-lc",
"--limit-const",
"Limiting constant.");
222 args.
AddOption(&adapt_lim_const,
"-alc",
"--adapt-limit-const",
223 "Adaptive limiting coefficient constant.");
224 args.
AddOption(&surface_fit_const,
"-sfc",
"--surface-fit-const",
225 "Surface preservation constant.");
226 args.
AddOption(&quad_type,
"-qt",
"--quad-type",
227 "Quadrature rule type:\n\t"
228 "1: Gauss-Lobatto\n\t"
229 "2: Gauss-Legendre\n\t"
230 "3: Closed uniform points");
231 args.
AddOption(&quad_order,
"-qo",
"--quad_order",
232 "Order of the quadrature rule.");
233 args.
AddOption(&solver_type,
"-st",
"--solver-type",
234 " Type of solver: (default) 0: Newton, 1: LBFGS");
235 args.
AddOption(&solver_iter,
"-ni",
"--newton-iters",
236 "Maximum number of Newton iterations.");
237 args.
AddOption(&solver_rtol,
"-rtol",
"--newton-rel-tolerance",
238 "Relative tolerance for the Newton solver.");
239 args.
AddOption(&solver_art_type,
"-art",
"--adaptive-rel-tol",
240 "Type of adaptive relative linear solver tolerance:\n\t"
241 "0: None (default)\n\t"
242 "1: Eisenstat-Walker type 1\n\t"
243 "2: Eisenstat-Walker type 2");
244 args.
AddOption(&lin_solver,
"-ls",
"--lin-solver",
249 "3: MINRES + Jacobi preconditioner\n\t"
250 "4: MINRES + l1-Jacobi preconditioner");
251 args.
AddOption(&max_lin_iter,
"-li",
"--lin-iter",
252 "Maximum number of iterations in the linear solve.");
253 args.
AddOption(&move_bnd,
"-bnd",
"--move-boundary",
"-fix-bnd",
255 "Enable motion along horizontal and vertical boundaries.");
256 args.
AddOption(&combomet,
"-cmb",
"--combo-type",
257 "Combination of metrics options:\n\t"
258 "0: Use single metric\n\t"
259 "1: Shape + space-dependent size given analytically\n\t"
260 "2: Shape + adapted size given discretely; shared target");
261 args.
AddOption(&hradaptivity,
"-hr",
"--hr-adaptivity",
"-no-hr",
262 "--no-hr-adaptivity",
263 "Enable hr-adaptivity.");
264 args.
AddOption(&h_metric_id,
"-hmid",
"--h-metric",
265 "Same options as metric_id. Used to determine refinement"
266 " type for each element if h-adaptivity is enabled.");
267 args.
AddOption(&normalization,
"-nor",
"--normalization",
"-no-nor",
268 "--no-normalization",
269 "Make all terms in the optimization functional unitless.");
270 args.
AddOption(&fdscheme,
"-fd",
"--fd_approximation",
271 "-no-fd",
"--no-fd-approx",
272 "Enable finite difference based derivative computations.");
273 args.
AddOption(&exactaction,
"-ex",
"--exact_action",
274 "-no-ex",
"--no-exact-action",
275 "Enable exact action of TMOP_Integrator.");
276 args.
AddOption(&visualization,
"-vis",
"--visualization",
"-no-vis",
277 "--no-visualization",
278 "Enable or disable GLVis visualization.");
279 args.
AddOption(&verbosity_level,
"-vl",
"--verbosity-level",
280 "Set the verbosity level - 0, 1, or 2.");
281 args.
AddOption(&adapt_eval,
"-ae",
"--adaptivity-evaluator",
282 "0 - Advection based (DEFAULT), 1 - GSLIB.");
283 args.
AddOption(&devopt,
"-d",
"--device",
284 "Device configuration string, see Device::Configure().");
285 args.
AddOption(&pa,
"-pa",
"--partial-assembly",
"-no-pa",
286 "--no-partial-assembly",
"Enable Partial Assembly.");
287 args.
AddOption(&n_hr_iter,
"-nhr",
"--n_hr_iter",
288 "Number of hr-adaptivity iterations.");
289 args.
AddOption(&n_h_iter,
"-nh",
"--n_h_iter",
290 "Number of h-adaptivity iterations per r-adaptivity"
292 args.
AddOption(&surface_fit_adapt,
"-sfa",
"--adaptive-surface-fit",
"-no-sfa",
293 "--no-adaptive-surface-fit",
294 "Enable or disable adaptive surface fitting.");
295 args.
AddOption(&surface_fit_threshold,
"-sft",
"--surf-fit-threshold",
296 "Set threshold for surface fitting. TMOP solver will"
297 "terminate when max surface fitting error is below this limit");
298 args.
AddOption(&mesh_node_ordering,
"-mno",
"--mesh_node_ordering",
299 "Ordering of mesh nodes."
300 "0 (default): byNodes, 1: byVDIM");
301 args.
AddOption(&barrier_type,
"-btype",
"--barrier-type",
303 "1 - Shifted Barrier,"
304 "2 - Pseudo Barrier.");
305 args.
AddOption(&worst_case_type,
"-wctype",
"--worst-case-type",
317 if (h_metric_id < 0) { h_metric_id = metric_id; }
321 MFEM_VERIFY(strcmp(devopt,
"cpu")==0,
"HR-adaptivity is currently only"
322 " supported on cpus.");
328 Mesh *mesh =
new Mesh(mesh_file, 1, 1,
false);
339 if (mesh_poly_deg <= 0)
369 double mesh_volume = 0.0;
371 for (
int i = 0; i < mesh->
GetNE(); i++)
377 for (
int j = 0; j < dofs.
Size(); j++)
379 h0(dofs[j]) = min(h0(dofs[j]), hi);
383 const double small_phys_size = pow(mesh_volume, 1.0 / dim) / 100.0;
396 for (
int i = 0; i < fespace->
GetNDofs(); i++)
398 for (
int d = 0; d <
dim; d++)
404 for (
int i = 0; i < fespace->
GetNBE(); i++)
409 for (
int j = 0; j < vdofs.
Size(); j++) { rdm(vdofs[j]) = 0.0; }
418 ofstream mesh_ofs(
"perturbed.mesh");
419 mesh->
Print(mesh_ofs);
427 double min_detJ = -0.1;
474 cout <<
"Unknown metric_id: " << metric_id << endl;
493 default: cout <<
"Metric_id not supported for h-adaptivity: " << h_metric_id <<
500 switch (barrier_type)
508 default: cout <<
"barrier_type not supported: " << barrier_type << endl;
513 switch (worst_case_type)
521 default: cout <<
"worst_case_type not supported: " << worst_case_type << endl;
526 if (barrier_type > 0 || worst_case_type > 0)
528 if (barrier_type > 0)
530 MFEM_VERIFY(metric_id == 4 || metric_id == 14 || metric_id == 66,
531 "Metric not supported for shifted/pseudo barriers.");
542 if (metric_id < 300 || h_metric_id < 300)
544 MFEM_VERIFY(dim == 2,
"Incompatible metric for 3D meshes");
546 if (metric_id >= 300 || h_metric_id >= 300)
548 MFEM_VERIFY(dim == 3,
"Incompatible metric for 2D meshes");
558 GridFunction size(&ind_fes), aspr(&ind_fes), ori(&ind_fes);
588 #ifdef MFEM_USE_GSLIB
591 MFEM_ABORT(
"MFEM is not built with GSLIB.");
597 size.ProjectCoefficient(size_coeff);
602 size.ProjectCoefficient(size_coeff);
622 #ifdef MFEM_USE_GSLIB
625 MFEM_ABORT(
"MFEM is not built with GSLIB.");
637 for (
int i = 0; i < size.Size(); i++)
639 size(i) = std::pow(d_x(i),2)+std::pow(d_y(i),2);
641 const double max = size.Max();
643 for (
int i = 0; i < d_x.Size(); i++)
645 d_x(i) = std::abs(d_x(i));
646 d_y(i) = std::abs(d_y(i));
648 const double eps = 0.01;
649 const double aspr_ratio = 20.0;
650 const double size_ratio = 40.0;
652 for (
int i = 0; i < size.Size(); i++)
654 size(i) = (size(i)/max);
655 aspr(i) = (d_x(i)+eps)/(d_y(i)+eps);
656 aspr(i) = 0.1 + 0.9*(1-size(i))*(1-size(i));
657 if (aspr(i) > aspr_ratio) {aspr(i) = aspr_ratio;}
658 if (aspr(i) < 1.0/aspr_ratio) {aspr(i) = 1.0/aspr_ratio;}
661 const int NE = mesh->
GetNE();
662 double volume = 0.0, volume_ind = 0.0;
664 for (
int i = 0; i < NE; i++)
669 size.GetValues(i, ir, vals);
679 const double avg_zone_size = volume / NE;
681 const double small_avg_ratio = (volume_ind + (volume - volume_ind) /
685 const double small_zone_size = small_avg_ratio * avg_zone_size;
686 const double big_zone_size = size_ratio * small_zone_size;
688 for (
int i = 0; i < size.Size(); i++)
690 const double val = size(i);
691 const double a = (big_zone_size - small_zone_size) / small_zone_size;
692 size(i) = big_zone_size / (1.0+a*val);
713 #ifdef MFEM_USE_GSLIB
716 MFEM_ABORT(
"MFEM is not built with GSLIB.");
736 #ifdef MFEM_USE_GSLIB
739 MFEM_ABORT(
"MFEM is not built with GSLIB.");
743 if (metric_id == 14 || metric_id == 36)
746 size.ProjectCoefficient(size_coeff);
753 aspr.ProjectCoefficient(aspr_coeff);
776 default: cout <<
"Unknown target_id: " << target_id << endl;
return 3;
778 if (target_c == NULL)
788 if (barrier_type > 0 || worst_case_type > 0)
797 MFEM_VERIFY(pa ==
false,
"PA for finite differences is not implemented.");
809 default: cout <<
"Unknown quad_type: " << quad_type << endl;
return 3;
814 cout <<
"Triangle quadrature points: "
816 <<
"\nQuadrilateral quadrature points: "
821 cout <<
"Tetrahedron quadrature points: "
823 <<
"\nHexahedron quadrature points: "
825 <<
"\nPrism quadrature points: "
835 if (normalization) { dist = small_phys_size; }
837 if (lim_const != 0.0) { tmop_integ->
EnableLimiting(x0, dist, lim_coeff); }
843 if (adapt_lim_const > 0.0)
845 MFEM_VERIFY(pa ==
false,
"PA is not implemented for adaptive limiting");
850 if (adapt_eval == 0) { adapt_lim_eval =
new AdvectorCG(al); }
851 else if (adapt_eval == 1)
853 #ifdef MFEM_USE_GSLIB
856 MFEM_ABORT(
"MFEM is not built with GSLIB support!");
859 else { MFEM_ABORT(
"Bad interpolation option."); }
882 if (surface_fit_const > 0.0)
884 MFEM_VERIFY(hradaptivity ==
false,
885 "Surface fitting with HR is not implemented yet.");
886 MFEM_VERIFY(pa ==
false,
887 "Surface fitting with PA is not implemented yet.");
892 for (
int i = 0; i < mesh->
GetNE(); i++)
900 for (
int j = 0; j < surf_fit_marker.Size(); j++)
902 if (surf_fit_mat_gf(j) > 0.1 && surf_fit_mat_gf(j) < 0.9)
904 surf_fit_marker[j] =
true;
905 surf_fit_mat_gf(j) = 1.0;
909 surf_fit_marker[j] =
false;
910 surf_fit_mat_gf(j) = 0.0;
914 if (adapt_eval == 0) { adapt_surface =
new AdvectorCG; }
915 else if (adapt_eval == 1)
917 #ifdef MFEM_USE_GSLIB
920 MFEM_ABORT(
"MFEM is not built with GSLIB support!");
923 else { MFEM_ABORT(
"Bad interpolation option."); }
926 surf_fit_coeff, *adapt_surface);
977 else { tmop_integ2 =
new TMOP_Integrator(metric2, target_c, h_metric); }
986 if (lim_const != 0.0) { combo->
EnableLimiting(x0, dist, lim_coeff); }
995 if (pa) { a.
Setup(); }
999 const int NE = mesh->
GetNE();
1000 for (
int i = 0; i < NE; i++)
1008 min_detJ = min(min_detJ, transf->
Jacobian().
Det());
1011 cout <<
"Minimum det(J) of the original mesh is " << min_detJ << endl;
1013 if (min_detJ < 0.0 && barrier_type == 0
1014 && metric_id != 22 && metric_id != 211 && metric_id != 252
1015 && metric_id != 311 && metric_id != 313 && metric_id != 352)
1017 MFEM_ABORT(
"The input mesh is inverted! Try an untangling metric.");
1022 "Untangling is supported only for ideal targets.");
1026 min_detJ /= Wideal.
Det();
1029 min_detJ -= 0.01 * h0.Min();
1034 (hradaptivity ? mesh->
GetNE() : 1);
1035 double init_metric_energy = init_energy;
1036 if (lim_const > 0.0 || adapt_lim_const > 0.0 || surface_fit_const > 0.0)
1040 surf_fit_coeff.constant = 0.0;
1042 (hradaptivity ? mesh->
GetNE() : 1);
1044 adapt_lim_coeff.
constant = adapt_lim_const;
1045 surf_fit_coeff.constant = surface_fit_const;
1052 char title[] =
"Initial metric values";
1061 if (move_bnd ==
false)
1070 for (
int i = 0; i < mesh->
GetNBE(); i++)
1074 MFEM_VERIFY(!(dim == 2 && attr == 3),
1075 "Boundary attribute 3 must be used only for 3D meshes. "
1076 "Adjust the attributes (1/2/3/4 for fixed x/y/z/all "
1077 "components, rest for free nodes), or use -fix-bnd.");
1078 if (attr == 1 || attr == 2 || attr == 3) { n += nd; }
1079 if (attr == 4) { n += nd *
dim; }
1083 for (
int i = 0; i < mesh->
GetNBE(); i++)
1090 for (
int j = 0; j < nd; j++)
1091 { ess_vdofs[n++] = vdofs[j]; }
1095 for (
int j = 0; j < nd; j++)
1096 { ess_vdofs[n++] = vdofs[j+nd]; }
1100 for (
int j = 0; j < nd; j++)
1101 { ess_vdofs[n++] = vdofs[j+2*nd]; }
1105 for (
int j = 0; j < vdofs.
Size(); j++)
1106 { ess_vdofs[n++] = vdofs[j]; }
1114 Solver *S = NULL, *S_prec = NULL;
1115 const double linsol_rtol = 1e-12;
1116 if (lin_solver == 0)
1118 S =
new DSmoother(1, 1.0, max_lin_iter);
1120 else if (lin_solver == 1)
1137 if (lin_solver == 3 || lin_solver == 4)
1141 MFEM_VERIFY(lin_solver != 4,
"PA l1-Jacobi is not implemented");
1148 auto ds =
new DSmoother((lin_solver == 3) ? 0 : 1, 1.0, 1);
1149 ds->SetPositiveDiagonal(
true);
1162 if (surface_fit_threshold > 0)
1168 if (solver_type == 0)
1178 if (solver_art_type > 0)
1192 x, move_bnd, hradaptivity,
1193 mesh_poly_deg, h_metric_id,
1194 n_hr_iter, n_h_iter);
1196 if (adapt_lim_const > 0.)
1206 ofstream mesh_ofs(
"optimized.mesh");
1207 mesh_ofs.precision(14);
1208 mesh->
Print(mesh_ofs);
1212 (hradaptivity ? mesh->
GetNE() : 1);
1213 double fin_metric_energy = fin_energy;
1214 if (lim_const > 0.0 || adapt_lim_const > 0.0)
1218 surf_fit_coeff.constant = 0.0;
1220 (hradaptivity ? mesh->
GetNE() : 1);
1222 adapt_lim_coeff.
constant = adapt_lim_const;
1223 surf_fit_coeff.constant = surface_fit_const;
1225 std::cout << std::scientific << std::setprecision(4);
1226 cout <<
"Initial strain energy: " << init_energy
1227 <<
" = metrics: " << init_metric_energy
1228 <<
" + extra terms: " << init_energy - init_metric_energy << endl;
1229 cout <<
" Final strain energy: " << fin_energy
1230 <<
" = metrics: " << fin_metric_energy
1231 <<
" + extra terms: " << fin_energy - fin_metric_energy << endl;
1232 cout <<
"The strain energy decreased by: "
1233 << (init_energy - fin_energy) * 100.0 / init_energy <<
" %." << endl;
1238 char title[] =
"Final metric values";
1242 if (adapt_lim_const > 0.0 && visualization)
1246 600, 600, 300, 300);
1249 if (surface_fit_const > 0.0)
1255 600, 900, 300, 300);
1257 900, 900, 300, 300);
1259 double err_avg, err_max;
1261 std::cout <<
"Avg fitting error: " << err_avg << std::endl
1262 <<
"Max fitting error: " << err_max << std::endl;
1269 sock <<
"solution\n";
1274 sock <<
"window_title 'Displacements'\n"
1275 <<
"window_geometry "
1276 << 1200 <<
" " << 0 <<
" " << 600 <<
" " << 600 <<
"\n"
1277 <<
"keys jRmclA" << endl;
1284 delete metric_coeff1;
1285 delete adapt_lim_eval;
1286 delete adapt_surface;
1288 delete hr_adapt_coeff;
1292 delete untangler_metric;
int GetNPoints() const
Returns the number of the points in the integration rule.
void ComputeUntangleMetricQuantiles(const Vector &x, const FiniteElementSpace &fes)
void discrete_aspr_3d(const Vector &x, Vector &v)
int Size() const
Return the logical size of the array.
Conjugate gradient method.
int GetNDofs() const
Returns number of degrees of freedom.
AssemblyLevel
Enumeration defining the assembly level for bilinear and nonlinear form classes derived from Operator...
Class for an integration rule - an Array of IntegrationPoint.
3D non-barrier Shape (S) metric.
void EnableFiniteDifferences(const GridFunction &x)
Enables FD-based approximation and computes dx.
Class for grid function - Vector with associated FE space.
int DofToVDof(int dof, int vd, int ndofs=-1) const
double discrete_size_2d(const Vector &x)
3D barrier Shape+Size (VS) metric, well-posed (invex).
2D non-barrier Shape+Size (VS) metric.
Data type for scaled Jacobi-type smoother of sparse matrix.
const IntegrationRule & Get(int GeomType, int Order)
Returns an integration rule for given GeomType and Order.
IntegrationRules IntRulesLo(0, Quadrature1D::GaussLobatto)
void SetPositiveDiagonal(bool pos_diag=true)
Replace diagonal entries with their absolute values.
void SetIntegrationRules(IntegrationRules &irules, int order)
Prescribe a set of integration rules; relevant for mixed meshes.
void SetFromTrueVector()
Shortcut for calling SetFromTrueDofs() with GetTrueVector() as argument.
3D barrier Shape+Size (VS) metric, well-posed (polyconvex).
A coefficient that is constant across space and time.
virtual void SetSerialDiscreteTargetOrientation(const GridFunction &tspec_)
void EnableNormalization(const GridFunction &x)
Computes the normalization factors of the metric and limiting integrals using the mesh position given...
int GetNBE() const
Returns number of boundary elements.
3D barrier Shape (S) metric, well-posed (polyconvex & invex).
void SetAdaptivityEvaluator(AdaptivityEvaluator *ae)
void ProjectDiscCoefficient(VectorCoefficient &coeff, Array< int > &dof_attr)
2D barrier Shape+Size (VS) metric (polyconvex).
double surface_level_set(const Vector &x)
Coefficient defined by a GridFunction. This coefficient is mesh dependent.
Container class for integration rules.
Data type dense matrix using column-major storage.
3D barrier Shape (S) metric, well-posed (polyconvex & invex).
void GetSurfaceFittingErrors(double &err_avg, double &err_max)
int Size() const
Returns the size of the vector.
void SetVolumeScale(double vol_scale)
Used by target type IDEAL_SHAPE_EQUAL_SIZE. The default volume scale is 1.
2D barrier shape (S) metric (polyconvex).
void EnableAdaptiveLimiting(const GridFunction &z0, Coefficient &coeff, AdaptivityEvaluator &ae)
Restriction of the node positions to certain regions.
3D non-barrier metric without a type.
2D barrier size (V) metric (polyconvex).
void SetIntegrationRules(IntegrationRules &irules, int order)
Prescribe a set of integration rules; relevant for mixed meshes.
int GetNE() const
Returns number of elements.
void EnableNormalization(const GridFunction &x)
Normalization factor that considers all integrators in the combination.
2D barrier Shape+Size (VS) metric (polyconvex).
void Print(std::ostream &out=mfem::out)
Print the configuration of the MFEM virtual device object.
3D barrier Shape+Size (VS) metric, well-posed (invex).
void vis_tmop_metric_s(int order, TMOP_QualityMetric &qm, const TargetConstructor &tc, Mesh &mesh, char *title, int position)
void SetExactActionFlag(bool flag_)
Flag to control if exact action of Integration is effected.
void Randomize(int seed=0)
Set random values in the vector.
void SetMinDetPtr(double *md_ptr)
2D barrier Shape+Size (VS) metric (not polyconvex).
Geometry::Type GetElementBaseGeometry(int i) const
3D barrier Shape+Size (VS) metric, well-posed (invex).
void EnableLimiting(const GridFunction &n0, const GridFunction &dist, Coefficient &w0, TMOP_LimiterFunction *lfunc=NULL)
Adds the limiting term to the first integrator. Disables it for the rest.
2D Shifted barrier form of shape metric (mu_2).
virtual void SetSerialDiscreteTargetAspectRatio(const GridFunction &tspec_)
const DenseMatrix & GetGeomToPerfGeomJac(int GeomType) const
DofTransformation * GetBdrElementVDofs(int i, Array< int > &vdofs) const
Returns indexes of degrees of freedom for i'th boundary element.
2D barrier shape (S) metric (not polyconvex).
3D barrier Shape (S) metric, well-posed (polyconvex & invex).
void SetTerminationWithMaxSurfaceFittingError(double max_error)
virtual void Save(std::ostream &out) const
Save the GridFunction to an output stream.
Geometry::Type GetGeomType() const
Returns the Geometry::Type of the reference element.
2D non-barrier shape (S) metric.
Abstract class for local mesh quality metrics in the target-matrix optimization paradigm (TMOP) by P...
IntegrationPoint & IntPoint(int i)
Returns a reference to the i-th integration point.
void GetDerivative(int comp, int der_comp, GridFunction &der)
Compute a certain derivative of a function's component. Derivatives of the function are computed at t...
void SetTrueVector()
Shortcut for calling GetTrueDofs() with GetTrueVector() as argument.
virtual void SetPreconditioner(Solver &pr)
This should be called before SetOperator.
virtual void SetPrintLevel(int print_lvl)
Legacy method to set the level of verbosity of the solver output.
double GetElementSize(ElementTransformation *T, int type=0)
void EnableLimiting(const GridFunction &n0, const GridFunction &dist, Coefficient &w0, TMOP_LimiterFunction *lfunc=NULL)
Limiting of the mesh displacements (general version).
int GetNBE() const
Returns number of boundary elements in the mesh.
void Parse()
Parse the command-line options. Note that this function expects all the options provided through the ...
void SetCoefficient(Coefficient &w1)
Sets a scaling Coefficient for the quality metric term of the integrator.
2D non-barrier size (V) metric (not polyconvex).
void EnsureNCMesh(bool simplices_nonconforming=false)
3D barrier metric without a type.
Jacobi smoothing for a given bilinear form (no matrix necessary).
void UniformRefinement(int i, const DSTable &, int *, int *, int *)
void SetNodes(const GridFunction &n)
Set the nodes to be used in the target-matrix construction.
void SetMaxIter(int max_it)
T Max() const
Find the maximal element in the array, using the comparison operator < for class T.
3D barrier Shape+Size (VS) metric, well-posed (polyconvex).
Version of QuadraticFECollection with positive basis functions.
int GetAttribute() const
Return element's attribute.
double discrete_ori_2d(const Vector &x)
2D barrier Shape+Size+Orientation (VOS) metric (polyconvex).
virtual void SetNodalFESpace(FiniteElementSpace *nfes)
void AddFESpaceForUpdate(FiniteElementSpace *fes)
void PrintUsage(std::ostream &out) const
Print the usage message.
void DiffuseField(ParGridFunction &field, int smooth_steps)
void EnableAdaptiveSurfaceFitting()
2D barrier Shape+Orientation (OS) metric (polyconvex).
virtual DofTransformation * GetElementDofs(int elem, Array< int > &dofs) const
Returns indices of degrees of freedom of element 'elem'.
A general vector function coefficient.
3D barrier Shape+Size (VS) metric (polyconvex).
void SetAbsTol(double atol)
Array< int > bdr_attributes
A list of all unique boundary attributes used by the Mesh.
void AddGridFunctionForUpdate(GridFunction *gf)
void SetRelTol(double rtol)
2D barrier (not a shape) metric (polyconvex).
virtual void SetPreconditioner(Solver &pr)
This should be called before SetOperator.
Class FiniteElementSpace - responsible for providing FEM view of the mesh, mainly managing the set of...
int GetDof() const
Returns the number of degrees of freedom in the finite element.
double weight_fun(const Vector &x)
2D barrier size (V) metric (polyconvex).
Collection of finite elements from the same family in multiple dimensions. This class is used to matc...
void AddOption(bool *var, const char *enable_short_name, const char *enable_long_name, const char *disable_short_name, const char *disable_long_name, const char *description, bool required=false)
Add a boolean option and set 'var' to receive the value. Enable/disable tags are used to set the bool...
void SetAdaptiveLinRtol(const int type=2, const double rtol0=0.5, const double rtol_max=0.9, const double alpha=0.5 *(1.0+sqrt(5.0)), const double gamma=1.0)
Enable adaptive linear solver relative tolerance algorithm.
double adapt_lim_fun(const Vector &x)
void AddTMOPIntegrator(TMOP_Integrator *ti)
Adds a new TMOP_Integrator to the combination.
double material_indicator_2d(const Vector &x)
2D barrier Shape+Size (VS) metric (not polyconvex).
double discrete_size_3d(const Vector &x)
double discrete_aspr_2d(const Vector &x)
Class for integration point with weight.
void GetElementTransformation(int i, IsoparametricTransformation *ElTr)
virtual void Print(std::ostream &os=mfem::out) const
2D barrier Shape+Size+Orientation (VOS) metric (polyconvex).
3D Shape (S) metric, untangling version of 303.
IntegrationRules IntRulesCU(0, Quadrature1D::ClosedUniform)
virtual const FiniteElement * GetFE(int i) const
Returns pointer to the FiniteElement in the FiniteElementCollection associated with i'th element in t...
void PrintOptions(std::ostream &out) const
Print the options.
double infinity()
Define a shortcut for std::numeric_limits<double>::infinity()
virtual void ProjectCoefficient(Coefficient &coeff)
Project coeff Coefficient to this GridFunction. The projection computation depends on the choice of t...
A general function coefficient.
void SetAttribute(int i, int attr)
Set the attribute of element i.
void VisualizeField(socketstream &sock, const char *vishost, int visport, GridFunction &gf, const char *title, int x, int y, int w, int h, const char *keys, bool vec)
3D barrier Shape+Size (VS) metric, well-posed (polyconvex).
Arbitrary order H1-conforming (continuous) finite elements.
TargetType
Target-matrix construction algorithms supported by this class.
void EnableSurfaceFitting(const GridFunction &s0, const Array< bool > &smarker, Coefficient &coeff, AdaptivityEvaluator &ae)
Fitting of certain DOFs to the zero level set of a function.
const FiniteElement * GetBE(int i) const
Returns pointer to the FiniteElement in the FiniteElementCollection associated with i'th boundary fac...
void SetNodalGridFunction(GridFunction *nodes, bool make_owner=false)
Base class representing target-matrix construction algorithms for mesh optimization via the target-ma...
The MFEM Device class abstracts hardware devices such as GPUs, as well as programming models such as ...
virtual void SetAnalyticTargetSpec(Coefficient *sspec, VectorCoefficient *vspec, TMOPMatrixCoefficient *mspec)
3D barrier Shape+Size (VS) metric (polyconvex).
int material_id(int el_id, const GridFunction &g)
virtual void SetSerialDiscreteTargetSize(const GridFunction &tspec_)
IntegrationRules IntRules(0, Quadrature1D::GaussLegendre)
A global object with all integration rules (defined in intrules.cpp)
2D barrier Shape+Orientation (OS) metric (polyconvex).
virtual double * HostReadWrite()
Shortcut for mfem::ReadWrite(vec.GetMemory(), vec.Size(), false).
double GetElementVolume(int i)
const Element * GetBdrElement(int i) const
3D barrier Shape (S) metric, well-posed (polyconvex & invex).
2D non-barrier metric without a type.
Arbitrary order "L2-conforming" discontinuous finite elements.
bool Good() const
Return true if the command line options were parsed successfully.
A TMOP integrator class based on any given TMOP_QualityMetric and TargetConstructor.
2D non-barrier Shape+Size+Orientation (VOS) metric (polyconvex).