56 #ifndef MFEM_USE_GINKGO
57 #error This example requires that MFEM is built with MFEM_USE_GINKGO=YES
63 int main(
int argc,
char *argv[])
66 const char *mesh_file =
"../../data/star.mesh";
68 bool static_cond =
false;
70 const char *device_config =
"cpu";
71 bool visualization =
true;
72 int solver_config = 0;
76 args.
AddOption(&mesh_file,
"-m",
"--mesh",
79 "Finite element order (polynomial degree) or -1 for"
80 " isoparametric space.");
81 args.
AddOption(&static_cond,
"-sc",
"--static-condensation",
"-no-sc",
82 "--no-static-condensation",
"Enable static condensation.");
83 args.
AddOption(&pa,
"-pa",
"--partial-assembly",
"-no-pa",
84 "--no-partial-assembly",
"Enable Partial Assembly.");
85 args.
AddOption(&device_config,
"-d",
"--device",
86 "Device configuration string, see Device::Configure().");
87 args.
AddOption(&visualization,
"-vis",
"--visualization",
"-no-vis",
89 "Enable or disable GLVis visualization.");
90 args.
AddOption(&solver_config,
"-s",
"--solver-config",
91 "Solver and preconditioner combination: \n\t"
92 " 0 - Ginkgo solver and Ginkgo preconditioner, \n\t"
93 " 1 - Ginkgo solver and MFEM preconditioner, \n\t"
94 " 2 - MFEM solver and Ginkgo preconditioner, \n\t"
95 " 3 - MFEM solver and MFEM preconditioner.");
96 args.
AddOption(&print_lvl,
"-pl",
"--print-level",
97 "Print level for iterative solver (1 prints every iteration).");
108 Device device(device_config);
114 Mesh *mesh =
new Mesh(mesh_file, 1, 1);
123 (int)floor(log(50000./mesh->
GetNE())/log(2.)/
dim);
124 for (
int l = 0; l < ref_levels; l++)
141 cout <<
"Using isoparametric FEs: " << fec->
Name() << endl;
148 cout <<
"Number of finite element unknowns: "
195 cout <<
"Size of linear system: " << A->
Height() << endl;
200 switch (solver_config)
205 cout <<
"Using Ginkgo solver + preconditioner...\n";
214 ginkgo_solver.
Mult(B, X);
221 cout <<
"Using Ginkgo solver + MFEM preconditioner...\n";
232 ginkgo_solver.
Mult(B, X);
239 cout <<
"Using MFEM solver + Ginkgo preconditioner...\n";
243 PCG(*A, M, B, X, print_lvl, 400, 1e-12, 0.0);
250 cout <<
"Using MFEM solver + MFEM preconditioner...\n";
253 PCG(*A, M, B, X, print_lvl, 400, 1e-12, 0.0);
266 switch (solver_config)
271 cout <<
"Using Ginkgo solver + preconditioner...\n";
272 MFEM_ABORT(
"Cannot use Ginkgo preconditioner in partial assembly mode.\n"
273 " Try -s 1 to test Ginkgo solver with an MFEM preconditioner.");
280 cout <<
"Using Ginkgo solver + MFEM preconditioner...\n";
290 ginkgo_solver.
Mult(B, X);
297 cout <<
"Using MFEM solver + Ginkgo preconditioner...\n";
298 MFEM_ABORT(
"Cannot use Ginkgo preconditioner in partial assembly mode.\n"
299 " Try -s 1 to test Ginkgo solver with an MFEM preconditioner.");
306 cout <<
"Using MFEM solver + MFEM preconditioner...\n";
307 PCG(*A, M, B, X, print_lvl, 400, 1e-12, 0.0);
314 cout <<
"Using MFEM solver + no preconditioner...\n";
315 CG(*A, B, X, print_lvl, 400, 1e-12, 0.0);
324 ofstream mesh_ofs(
"refined.mesh");
325 mesh_ofs.precision(8);
326 mesh->
Print(mesh_ofs);
327 ofstream sol_ofs(
"sol.gf");
328 sol_ofs.precision(8);
337 sol_sock.precision(8);
338 sol_sock <<
"solution\n" << *mesh << x << flush;
345 if (order > 0) {
delete fec; }
int Size() const
Return the logical size of the array.
Class for domain integration L(v) := (f, v)
void SetRelTol(double rtol)
Class for grid function - Vector with associated FE space.
Data type for scaled Jacobi-type smoother of sparse matrix.
virtual void SetOperator(const Operator &op)
A coefficient that is constant across space and time.
Pointer to an Operator of a specified type.
virtual void GetEssentialTrueDofs(const Array< int > &bdr_attr_is_ess, Array< int > &ess_tdof_list, int component=-1)
Get a list of essential true dofs, ess_tdof_list, corresponding to the boundary attributes marked in ...
int GetNE() const
Returns number of elements.
void Print(std::ostream &out=mfem::out)
Print the configuration of the MFEM virtual device object.
void SetMaxIter(int max_it)
bool UsesTensorBasis(const FiniteElementSpace &fes)
Return true if the mesh contains only one topology and the elements are tensor elements.
virtual void Save(std::ostream &out) const
Save the GridFunction to an output stream.
void Parse()
Parse the command-line options. Note that this function expects all the options provided through the ...
int Height() const
Get the height (size of output) of the Operator. Synonym with NumRows().
Jacobi smoothing for a given bilinear form (no matrix necessary).
void UniformRefinement(int i, const DSTable &, int *, int *, int *)
T Max() const
Find the maximal element in the array, using the comparison operator < for class T.
void CG(const Operator &A, const Vector &b, Vector &x, int print_iter, int max_num_iter, double RTOLERANCE, double ATOLERANCE)
Conjugate gradient method. (tolerances are squared)
void PCG(const Operator &A, Solver &B, const Vector &b, Vector &x, int print_iter, int max_num_iter, double RTOLERANCE, double ATOLERANCE)
Preconditioned conjugate gradient method. (tolerances are squared)
virtual int GetTrueVSize() const
Return the number of vector true (conforming) dofs.
void PrintUsage(std::ostream &out) const
Print the usage message.
Operator * Ptr() const
Access the underlying Operator pointer.
void SetPrintLevel(int print_lvl)
Array< int > bdr_attributes
A list of all unique boundary attributes used by the Mesh.
Class FiniteElementSpace - responsible for providing FEM view of the mesh, mainly managing the set of...
Collection of finite elements from the same family in multiple dimensions. This class is used to matc...
void AddOption(bool *var, const char *enable_short_name, const char *enable_long_name, const char *disable_short_name, const char *disable_long_name, const char *description, bool required=false)
Add a boolean option and set 'var' to receive the value. Enable/disable tags are used to set the bool...
virtual const char * Name() const
virtual void Print(std::ostream &os=mfem::out) const
virtual void Mult(const Vector &x, Vector &y) const
void PrintOptions(std::ostream &out) const
Print the options.
void SetAbsTol(double atol)
void GetNodes(Vector &node_coord) const
Arbitrary order H1-conforming (continuous) finite elements.
virtual void SetOperator(const Operator &op)
The MFEM Device class abstracts hardware devices such as GPUs, as well as programming models such as ...
bool Good() const
Return true if the command line options were parsed successfully.