MFEM
v4.5.1
Finite element discretization library
|
Go to the source code of this file.
Namespaces | |
mfem | |
Functions | |
ElementTransformation * | mfem::RefinedToCoarse (Mesh &coarse_mesh, const ElementTransformation &T, const IntegrationPoint &ip, IntegrationPoint &coarse_ip) |
double | mfem::LpNormLoop (double p, Coefficient &coeff, Mesh &mesh, const IntegrationRule *irs[]) |
double | mfem::LpNormLoop (double p, VectorCoefficient &coeff, Mesh &mesh, const IntegrationRule *irs[]) |
double | mfem::ComputeLpNorm (double p, Coefficient &coeff, Mesh &mesh, const IntegrationRule *irs[]) |
Compute the Lp norm of a function f. \( \| f \|_{Lp} = ( \int_\Omega | f |^p d\Omega)^{1/p} \). More... | |
double | mfem::ComputeLpNorm (double p, VectorCoefficient &coeff, Mesh &mesh, const IntegrationRule *irs[]) |
Compute the Lp norm of a vector function f = {f_i}_i=1...N. \( \| f \|_{Lp} = ( \sum_i \| f_i \|_{Lp}^p )^{1/p} \). More... | |
double | mfem::ComputeGlobalLpNorm (double p, Coefficient &coeff, ParMesh &pmesh, const IntegrationRule *irs[]) |
Compute the global Lp norm of a function f. \( \| f \|_{Lp} = ( \int_\Omega | f |^p d\Omega)^{1/p} \). More... | |
double | mfem::ComputeGlobalLpNorm (double p, VectorCoefficient &coeff, ParMesh &pmesh, const IntegrationRule *irs[]) |
Compute the global Lp norm of a vector function f = {f_i}_i=1...N. \( \| f \|_{Lp} = ( \sum_i \| f_i \|_{Lp}^p )^{1/p} \). More... | |