MFEM  v4.5.1
Finite element discretization library
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Pages
Namespaces | Functions
coefficient.cpp File Reference

Go to the source code of this file.

Namespaces

 mfem
 

Functions

ElementTransformation * mfem::RefinedToCoarse (Mesh &coarse_mesh, const ElementTransformation &T, const IntegrationPoint &ip, IntegrationPoint &coarse_ip)
 
double mfem::LpNormLoop (double p, Coefficient &coeff, Mesh &mesh, const IntegrationRule *irs[])
 
double mfem::LpNormLoop (double p, VectorCoefficient &coeff, Mesh &mesh, const IntegrationRule *irs[])
 
double mfem::ComputeLpNorm (double p, Coefficient &coeff, Mesh &mesh, const IntegrationRule *irs[])
 Compute the Lp norm of a function f. \( \| f \|_{Lp} = ( \int_\Omega | f |^p d\Omega)^{1/p} \). More...
 
double mfem::ComputeLpNorm (double p, VectorCoefficient &coeff, Mesh &mesh, const IntegrationRule *irs[])
 Compute the Lp norm of a vector function f = {f_i}_i=1...N. \( \| f \|_{Lp} = ( \sum_i \| f_i \|_{Lp}^p )^{1/p} \). More...
 
double mfem::ComputeGlobalLpNorm (double p, Coefficient &coeff, ParMesh &pmesh, const IntegrationRule *irs[])
 Compute the global Lp norm of a function f. \( \| f \|_{Lp} = ( \int_\Omega | f |^p d\Omega)^{1/p} \). More...
 
double mfem::ComputeGlobalLpNorm (double p, VectorCoefficient &coeff, ParMesh &pmesh, const IntegrationRule *irs[])
 Compute the global Lp norm of a vector function f = {f_i}_i=1...N. \( \| f \|_{Lp} = ( \sum_i \| f_i \|_{Lp}^p )^{1/p} \). More...