48 #ifndef MFEM_USE_SUNDIALS 49 #error This example requires that MFEM is built with MFEM_USE_SUNDIALS=YES 55 class ReducedSystemOperator;
84 ReducedSystemOperator *reduced_oper;
103 enum NonlinearSolverType
110 double visc,
double mu,
double K,
111 NonlinearSolverType nls_type);
118 virtual void ImplicitSolve(
const double dt,
const Vector &x,
Vector &k);
144 virtual int SUNImplicitSetup(
const Vector &y,
const Vector &fy,
145 int jok,
int *jcur,
double gamma);
149 virtual int SUNImplicitSolve(
const Vector &
b,
Vector &x,
double tol);
156 virtual ~HyperelasticOperator();
163 class ReducedSystemOperator :
public Operator 179 void SetParameters(
double dt_,
const Vector *v_,
const Vector *x_);
187 virtual ~ReducedSystemOperator();
193 class ElasticEnergyCoefficient :
public Coefficient 202 : model(m), x(x_) { }
204 virtual ~ElasticEnergyCoefficient() { }
213 bool init_vis =
false);
216 int main(
int argc,
char *argv[])
219 Mpi::Init(argc, argv);
220 int myid = Mpi::WorldRank();
225 const char *mesh_file =
"../../data/beam-quad.mesh";
226 int ser_ref_levels = 2;
227 int par_ref_levels = 0;
229 int ode_solver_type = 3;
230 double t_final = 300.0;
235 bool visualization =
true;
236 const char *nls =
"newton";
240 const double reltol = 1e-1, abstol = 1e-1;
244 const double cvode_eps_lin = 1e-4;
246 const double arkode_eps_nonlin = 1e-6;
249 args.
AddOption(&mesh_file,
"-m",
"--mesh",
250 "Mesh file to use.");
251 args.
AddOption(&ser_ref_levels,
"-rs",
"--refine-serial",
252 "Number of times to refine the mesh uniformly in serial.");
253 args.
AddOption(&par_ref_levels,
"-rp",
"--refine-parallel",
254 "Number of times to refine the mesh uniformly in parallel.");
256 "Order (degree) of the finite elements.");
257 args.
AddOption(&ode_solver_type,
"-s",
"--ode-solver",
259 "1 - Backward Euler,\n\t" 260 "2 - SDIRK2, L-stable\n\t" 261 "3 - SDIRK3, L-stable\n\t" 262 "4 - Implicit Midpoint,\n\t" 263 "5 - SDIRK2, A-stable,\n\t" 264 "6 - SDIRK3, A-stable,\n\t" 265 "7 - Forward Euler,\n\t" 269 "11 - CVODE implicit BDF, approximate Jacobian,\n\t" 270 "12 - CVODE implicit BDF, specified Jacobian,\n\t" 271 "13 - CVODE implicit ADAMS, approximate Jacobian,\n\t" 272 "14 - CVODE implicit ADAMS, specified Jacobian,\n\t" 273 "15 - ARKODE implicit, approximate Jacobian,\n\t" 274 "16 - ARKODE implicit, specified Jacobian,\n\t" 275 "17 - ARKODE explicit, 4th order.");
276 args.
AddOption(&nls,
"-nls",
"--nonlinear-solver",
277 "Nonlinear systems solver: " 278 "\"newton\" (plain Newton) or \"kinsol\" (KINSOL).");
279 args.
AddOption(&t_final,
"-tf",
"--t-final",
280 "Final time; start time is 0.");
281 args.
AddOption(&dt,
"-dt",
"--time-step",
283 args.
AddOption(&visc,
"-v",
"--viscosity",
284 "Viscosity coefficient.");
286 "Shear modulus in the Neo-Hookean hyperelastic model.");
287 args.
AddOption(&K,
"-K",
"--bulk-modulus",
288 "Bulk modulus in the Neo-Hookean hyperelastic model.");
289 args.
AddOption(&visualization,
"-vis",
"--visualization",
"-no-vis",
290 "--no-visualization",
291 "Enable or disable GLVis visualization.");
292 args.
AddOption(&vis_steps,
"-vs",
"--visualization-steps",
293 "Visualize every n-th timestep.");
309 if (ode_solver_type < 1 || ode_solver_type > 17)
313 cout <<
"Unknown ODE solver type: " << ode_solver_type <<
'\n';
321 Mesh *mesh =
new Mesh(mesh_file, 1, 1);
325 map<string,HyperelasticOperator::NonlinearSolverType> nls_map;
326 nls_map[
"newton"] = HyperelasticOperator::NEWTON;
327 nls_map[
"kinsol"] = HyperelasticOperator::KINSOL;
328 if (nls_map.find(nls) == nls_map.end())
332 cout <<
"Unknown type of nonlinear solver: " << nls << endl;
341 for (
int lev = 0; lev < ser_ref_levels; lev++)
351 for (
int lev = 0; lev < par_ref_levels; lev++)
368 cout <<
"Number of velocity/deformation unknowns: " << glob_size << endl;
373 true_offset[1] = true_size;
374 true_offset[2] = 2*true_size;
378 v_gf.
MakeTRef(&fespace, vx, true_offset[0]);
379 x_gf.
MakeTRef(&fespace, vx, true_offset[1]);
405 HyperelasticOperator oper(fespace, ess_bdr, visc,
mu, K, nls_map[nls]);
414 visualize(vis_v, pmesh, &x_gf, &v_gf,
"Velocity",
true);
421 oper.GetElasticEnergyDensity(x_gf, w_gf);
423 visualize(vis_w, pmesh, &x_gf, &w_gf,
"Elastic energy density",
true);
427 double ee0 = oper.ElasticEnergy(x_gf);
428 double ke0 = oper.KineticEnergy(v_gf);
431 cout <<
"initial elastic energy (EE) = " << ee0 << endl;
432 cout <<
"initial kinetic energy (KE) = " << ke0 << endl;
433 cout <<
"initial total energy (TE) = " << (ee0 + ke0) << endl;
445 switch (ode_solver_type)
457 case 8: ode_solver =
new RK2Solver(0.5);
break;
459 case 10: ode_solver =
new RK4Solver;
break;
466 CVodeSetEpsLin(cvode->
GetMem(), cvode_eps_lin);
468 if (ode_solver_type == 11)
472 ode_solver = cvode;
break;
479 CVodeSetEpsLin(cvode->
GetMem(), cvode_eps_lin);
481 if (ode_solver_type == 13)
485 ode_solver = cvode;
break;
489 arkode =
new ARKStepSolver(MPI_COMM_WORLD, ARKStepSolver::IMPLICIT);
492 ARKStepSetNonlinConvCoef(arkode->
GetMem(), arkode_eps_nonlin);
494 if (ode_solver_type == 15)
498 ode_solver = arkode;
break;
501 arkode =
new ARKStepSolver(MPI_COMM_WORLD, ARKStepSolver::EXPLICIT);
505 ode_solver = arkode;
break;
509 if (ode_solver_type < 11) { ode_solver->
Init(oper); }
513 bool last_step =
false;
514 for (
int ti = 1; !last_step; ti++)
516 double dt_real = min(dt, t_final -
t);
518 ode_solver->
Step(vx,
t, dt_real);
520 last_step = (
t >= t_final - 1e-8*dt);
522 if (last_step || (ti % vis_steps) == 0)
526 double ee = oper.ElasticEnergy(x_gf);
527 double ke = oper.KineticEnergy(v_gf);
531 cout <<
"step " << ti <<
", t = " <<
t <<
", EE = " << ee
532 <<
", KE = " << ke <<
", ΔTE = " << (ee+ke)-(ee0+ke0) << endl;
535 else if (arkode) { arkode->
PrintInfo(); }
543 oper.GetElasticEnergyDensity(x_gf, w_gf);
557 ostringstream mesh_name, velo_name, ee_name;
558 mesh_name <<
"deformed." << setfill(
'0') << setw(6) << myid;
559 velo_name <<
"velocity." << setfill(
'0') << setw(6) << myid;
560 ee_name <<
"elastic_energy." << setfill(
'0') << setw(6) << myid;
562 ofstream mesh_ofs(mesh_name.str().c_str());
563 mesh_ofs.precision(8);
564 pmesh->
Print(mesh_ofs);
566 ofstream velo_ofs(velo_name.str().c_str());
567 velo_ofs.precision(8);
569 ofstream ee_ofs(ee_name.str().c_str());
571 oper.GetElasticEnergyDensity(x_gf, w_gf);
596 os <<
"solution\n" << *mesh << *field;
602 os <<
"window_size 800 800\n";
603 os <<
"window_title '" << field_name <<
"'\n";
610 os <<
"autoscale value\n";
617 ReducedSystemOperator::ReducedSystemOperator(
620 :
Operator(M_->ParFESpace()->TrueVSize()), M(M_), S(S_), H(H_),
621 Jacobian(NULL), dt(0.0), v(NULL), x(NULL), w(height), z(height),
622 ess_tdof_list(ess_tdof_list_)
625 void ReducedSystemOperator::SetParameters(
double dt_,
const Vector *v_,
628 dt = dt_; v = v_; x = x_;
637 M->TrueAddMult(k, y);
638 S->TrueAddMult(w, y);
642 Operator &ReducedSystemOperator::GetGradient(
const Vector &k)
const 648 localJ->
Add(dt*dt, H->GetLocalGradient(z));
649 Jacobian = M->ParallelAssemble(localJ);
656 ReducedSystemOperator::~ReducedSystemOperator()
665 NonlinearSolverType nls_type)
667 M(&fespace), S(&fespace), H(&fespace),
668 viscosity(visc), M_solver(
f.GetComm()), z(height/2),
669 local_grad_H(NULL), Jacobian(NULL)
671 const double rel_tol = 1e-8;
672 const int skip_zero_entries = 0;
674 const double ref_density = 1.0;
677 M.Assemble(skip_zero_entries);
678 M.Finalize(skip_zero_entries);
679 Mmat = M.ParallelAssemble();
680 fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
684 M_solver.iterative_mode =
false;
685 M_solver.SetRelTol(rel_tol);
686 M_solver.SetAbsTol(0.0);
687 M_solver.SetMaxIter(30);
688 M_solver.SetPrintLevel(0);
689 M_prec.SetType(HypreSmoother::Jacobi);
690 M_solver.SetPreconditioner(M_prec);
691 M_solver.SetOperator(*Mmat);
695 H.SetEssentialTrueDofs(ess_tdof_list);
699 S.Assemble(skip_zero_entries);
700 S.Finalize(skip_zero_entries);
702 reduced_oper =
new ReducedSystemOperator(&M, &S, &H, ess_tdof_list);
705 J_hypreSmoother->
SetType(HypreSmoother::l1Jacobi);
707 J_prec = J_hypreSmoother;
717 if (nls_type == KINSOL)
722 newton_solver = kinsolver;
724 newton_solver->SetMaxIter(200);
725 newton_solver->SetRelTol(rel_tol);
726 newton_solver->SetPrintLevel(1);
733 newton_solver->SetMaxIter(10);
734 newton_solver->SetRelTol(rel_tol);
735 newton_solver->SetPrintLevel(-1);
737 newton_solver->SetSolver(*J_solver);
738 newton_solver->iterative_mode =
false;
751 if (viscosity != 0.0)
757 M_solver.Mult(z, dv_dt);
762 void HyperelasticOperator::ImplicitSolve(
const double dt,
777 reduced_oper->SetParameters(dt, &v, &x);
779 newton_solver->Mult(zero, dv_dt);
780 MFEM_VERIFY(newton_solver->GetConverged(),
781 "Nonlinear solver did not converge.");
783 if (fespace.GetMyRank() == 0)
785 cout <<
" num nonlin sol iters = " << newton_solver->GetNumIterations()
786 <<
", final norm = " << newton_solver->GetFinalNorm() <<
'\n';
789 add(v, dt, dv_dt, dx_dt);
792 int HyperelasticOperator::SUNImplicitSetup(
const Vector &y,
793 const Vector &fy,
int jok,
int *jcur,
796 int sc = y.
Size() / 2;
800 if (Jacobian) {
delete Jacobian; }
802 local_grad_H = &H.GetLocalGradient(x);
803 localJ->
Add(gamma*gamma, *local_grad_H);
804 Jacobian = M.ParallelAssemble(localJ);
810 J_solver->SetOperator(*Jacobian);
822 int HyperelasticOperator::SUNImplicitSolve(
const Vector &
b,
Vector &x,
825 int sc =
b.Size() / 2;
827 Vector b_v(
b.GetData() + 0, sc);
828 Vector b_x(
b.GetData() + sc, sc);
837 lb_x.Distribute(b_x);
838 local_grad_H->Mult(lb_x, lrhs);
839 lrhs.ParallelAssemble(rhs);
841 M.TrueAddMult(b_v, rhs);
842 rhs.SetSubVector(ess_tdof_list, 0.0);
844 J_solver->iterative_mode =
false;
845 J_solver->Mult(rhs, x_v);
847 add(b_x, saved_gamma, x_v, x_x);
852 double HyperelasticOperator::ElasticEnergy(
const ParGridFunction &x)
const 854 return H.GetEnergy(x);
857 double HyperelasticOperator::KineticEnergy(
const ParGridFunction &v)
const 859 double loc_energy = 0.5*M.InnerProduct(v, v);
861 MPI_Allreduce(&loc_energy, &energy, 1, MPI_DOUBLE, MPI_SUM,
866 void HyperelasticOperator::GetElasticEnergyDensity(
869 ElasticEnergyCoefficient w_coeff(*model, x);
873 HyperelasticOperator::~HyperelasticOperator()
876 delete newton_solver;
888 model.SetTransformation(T);
891 return model.EvalW(J)/J.Det();
905 const double s = 0.1/64.;
908 v(
dim-1) =
s*x(0)*x(0)*(8.0-x(0));
void InitialDeformation(const Vector &x, Vector &y)
void Init(TimeDependentOperator &f_)
Initialize CVODE: calls CVodeCreate() to create the CVODE memory and set some defaults.
void EliminateRowsCols(const Array< int > &rows_cols, const HypreParVector &X, HypreParVector &B)
void SetSubVector(const Array< int > &dofs, const double value)
Set the entries listed in dofs to the given value.
double Eval(ElementTransformation &T, const IntegrationPoint &ip, double t)
Evaluate the coefficient in the element described by T at the point ip at time t. ...
Conjugate gradient method.
Class for grid function - Vector with associated FE space.
void SetSStolerances(double reltol, double abstol)
Set the scalar relative and scalar absolute tolerances.
A class to handle Vectors in a block fashion.
void SetFromTrueVector()
Shortcut for calling SetFromTrueDofs() with GetTrueVector() as argument.
A coefficient that is constant across space and time.
void PrintOptions(std::ostream &out) const
Print the options.
int TrueVSize() const
Obsolete, kept for backward compatibility.
void GetVectorGradient(ElementTransformation &tr, DenseMatrix &grad) const
Compute the vector gradient with respect to the physical element variable.
void PrintUsage(std::ostream &out) const
Print the usage message.
Base abstract class for first order time dependent operators.
void SwapNodes(GridFunction *&nodes, int &own_nodes_)
Swap the internal node GridFunction pointer and ownership flag members with the given ones...
void Mult(const Table &A, const Table &B, Table &C)
C = A * B (as boolean matrices)
virtual void Step(Vector &x, double &t, double &dt)=0
Perform a time step from time t [in] to time t [out] based on the requested step size dt [in]...
int Size() const
Returns the size of the vector.
T Max() const
Find the maximal element in the array, using the comparison operator < for class T.
Data type dense matrix using column-major storage.
Abstract class for solving systems of ODEs: dx/dt = f(x,t)
void SetMaxStep(double dt_max)
Set the maximum time step.
bool Good() const
Return true if the command line options were parsed successfully.
Abstract parallel finite element space.
int main(int argc, char *argv[])
virtual void ProjectCoefficient(Coefficient &coeff)
Project coeff Coefficient to this GridFunction. The projection computation depends on the choice of t...
Backward Euler ODE solver. L-stable.
void add(const Vector &v1, const Vector &v2, Vector &v)
void SetMaxSetupCalls(int max_calls)
Set maximum number of nonlinear iterations without a Jacobian update.
void SetPositiveDiagonal(bool pos=true)
After computing l1-norms, replace them with their absolute values.
Interface to ARKode's ARKStep module – additive Runge-Kutta methods.
void Add(const DenseMatrix &A, const DenseMatrix &B, double alpha, DenseMatrix &C)
C = A + alpha*B.
void SetTrueVector()
Shortcut for calling GetTrueDofs() with GetTrueVector() as argument.
virtual void SetPreconditioner(Solver &pr)
This should be called before SetOperator.
virtual void SetPrintLevel(int print_lvl)
Legacy method to set the level of verbosity of the solver output.
void Parse()
Parse the command-line options. Note that this function expects all the options provided through the ...
Interface to the CVODE library – linear multi-step methods.
Interface to the KINSOL library – nonlinear solver methods.
void UniformRefinement(int i, const DSTable &, int *, int *, int *)
void MakeTRef(FiniteElementSpace *f, double *tv)
Associate a new FiniteElementSpace and new true-dof data with the GridFunction.
void SetMaxIter(int max_it)
void SetMaxStep(double dt_max)
Set the maximum time step.
Newton's method for solving F(x)=b for a given operator F.
void SetJFNK(bool use_jfnk)
Set the Jacobian Free Newton Krylov flag. The default is false.
Parallel smoothers in hypre.
void PrintInfo() const
Print various ARKStep statistics.
HYPRE_BigInt GlobalTrueVSize() const
void Add(const int i, const int j, const double val)
double * GetData() const
Return a pointer to the beginning of the Vector data.
void * GetMem() const
Access the SUNDIALS memory structure.
A general vector function coefficient.
Mesh * GetMesh() const
Returns the mesh.
The classical explicit forth-order Runge-Kutta method, RK4.
void SetAbsTol(double atol)
Array< int > bdr_attributes
A list of all unique boundary attributes used by the Mesh.
void SetRelTol(double rtol)
void PrintInfo() const
Print various CVODE statistics.
virtual void SetOperator(const Operator &op)
Set the nonlinear Operator of the system and initialize KINSOL.
Base class Coefficients that optionally depend on space and time. These are used by the BilinearFormI...
void AddOption(bool *var, const char *enable_short_name, const char *enable_long_name, const char *disable_short_name, const char *disable_long_name, const char *description, bool required=false)
Add a boolean option and set 'var' to receive the value. Enable/disable tags are used to set the bool...
void visualize(ostream &os, ParMesh *mesh, ParGridFunction *deformed_nodes, ParGridFunction *field, const char *field_name=NULL, bool init_vis=false)
Third-order, strong stability preserving (SSP) Runge-Kutta method.
void InitialVelocity(const Vector &x, Vector &v)
void SetLSMaxIter(int m)
Set the maximum number of linear solver iterations.
int SpaceDimension() const
virtual void Save(std::ostream &out) const
Implicit midpoint method. A-stable, not L-stable.
Class for integration point with weight.
Abstract class for hyperelastic models.
int open(const char hostname[], int port)
Open the socket stream on 'port' at 'hostname'.
Arbitrary order H1-conforming (continuous) finite elements.
void GetNodes(Vector &node_coord) const
void Print(std::ostream &out=mfem::out) const override
Class for parallel grid function.
The classical forward Euler method.
Wrapper for hypre's ParCSR matrix class.
void Init(TimeDependentOperator &f_)
Initialize ARKode: calls ARKStepCreate() to create the ARKStep memory and set some defaults...
Class for parallel meshes.
void SetSStolerances(double reltol, double abstol)
Set the scalar relative and scalar absolute tolerances.
void UseSundialsLinearSolver()
Attach a SUNDIALS GMRES linear solver to ARKode.
void SetType(HypreSmoother::Type type, int relax_times=1)
Set the relaxation type and number of sweeps.
virtual void Init(TimeDependentOperator &f_)
Associate a TimeDependentOperator with the ODE solver.
void UseSundialsLinearSolver()
Attach SUNDIALS GMRES linear solver to CVODE.
virtual void SetOperator(const Operator &op)
Also calls SetOperator for the preconditioner if there is one.
Arbitrary order "L2-conforming" discontinuous finite elements.
double f(const Vector &p)