MFEM  v4.5.2
Finite element discretization library
ex1p.cpp
Go to the documentation of this file.
1 // MFEM Example 1 - Parallel Version
2 // Caliper Modification
3 //
4 // Compile with: make ex1p
5 //
6 // Sample runs: mpirun -np 4 ex1p -m ../data/square-disc.mesh
7 // mpirun -np 4 ex1p -m ../data/star.mesh
8 // mpirun -np 4 ex1p -m ../data/star-mixed.mesh
9 // mpirun -np 4 ex1p -m ../data/escher.mesh
10 // mpirun -np 4 ex1p -m ../data/fichera.mesh
11 // mpirun -np 4 ex1p -m ../data/fichera-mixed.mesh
12 // mpirun -np 4 ex1p -m ../data/toroid-wedge.mesh
13 // mpirun -np 4 ex1p -m ../data/periodic-annulus-sector.msh
14 // mpirun -np 4 ex1p -m ../data/periodic-torus-sector.msh
15 // mpirun -np 4 ex1p -m ../data/square-disc-p2.vtk -o 2
16 // mpirun -np 4 ex1p -m ../data/square-disc-p3.mesh -o 3
17 // mpirun -np 4 ex1p -m ../data/square-disc-nurbs.mesh -o -1
18 // mpirun -np 4 ex1p -m ../data/star-mixed-p2.mesh -o 2
19 // mpirun -np 4 ex1p -m ../data/disc-nurbs.mesh -o -1
20 // mpirun -np 4 ex1p -m ../data/pipe-nurbs.mesh -o -1
21 // mpirun -np 4 ex1p -m ../data/ball-nurbs.mesh -o 2
22 // mpirun -np 4 ex1p -m ../data/fichera-mixed-p2.mesh -o 2
23 // mpirun -np 4 ex1p -m ../data/star-surf.mesh
24 // mpirun -np 4 ex1p -m ../data/square-disc-surf.mesh
25 // mpirun -np 4 ex1p -m ../data/inline-segment.mesh
26 // mpirun -np 4 ex1p -m ../data/amr-quad.mesh
27 // mpirun -np 4 ex1p -m ../data/amr-hex.mesh
28 // mpirun -np 4 ex1p -m ../data/mobius-strip.mesh
29 // mpirun -np 4 ex1p -m ../data/mobius-strip.mesh -o -1 -sc
30 //
31 // Device sample runs:
32 // mpirun -np 4 ex1p -pa -d cuda
33 // mpirun -np 4 ex1p -pa -d occa-cuda
34 // mpirun -np 4 ex1p -pa -d raja-omp
35 // mpirun -np 4 ex1p -pa -d ceed-cpu
36 // * mpirun -np 4 ex1p -pa -d ceed-cuda
37 // mpirun -np 4 ex1p -pa -d ceed-cuda:/gpu/cuda/shared
38 // mpirun -np 4 ex1p -m ../data/beam-tet.mesh -pa -d ceed-cpu
39 //
40 // Description: This example is a copy of Example 1 instrumented with the
41 // Caliper performance profilinh library. Any option supported by
42 // the Caliper ConfigManager can be passed to the code using a
43 // configuration string after -p or --caliper flag. For more
44 // information, see the Caliper documentation.
45 //
46 // Examples: mpirun -np 4 ex1p --caliper runtime-report
47 // mpirun -np 4 ex1p --caliper runtime-report,mem.highwatermark,mpi-report
48 //
49 // The first run will return the default report. The second run will also output
50 // the memory high-water mark and time spent in MPI routines.
51 
52 #include "mfem.hpp"
53 #include <fstream>
54 #include <iostream>
55 
56 using namespace std;
57 using namespace mfem;
58 
59 int main(int argc, char *argv[])
60 {
61  // 1. Initialize MPI and HYPRE.
62  Mpi::Init(argc, argv);
63  int num_procs = Mpi::WorldSize();
64  int myid = Mpi::WorldRank();
65  Hypre::Init();
66  // Define Caliper ConfigManager
67  cali::ConfigManager mgr;
68  // Caliper instrumentation
69  MFEM_PERF_FUNCTION;
70 
71  // 2. Parse command-line options.
72  const char *mesh_file = "../../data/star.mesh";
73  int order = 1;
74  bool static_cond = false;
75  bool pa = false;
76  const char *device_config = "cpu";
77  bool visualization = true;
78  const char* cali_config = "runtime-report";
79 
80  OptionsParser args(argc, argv);
81  args.AddOption(&mesh_file, "-m", "--mesh",
82  "Mesh file to use.");
83  args.AddOption(&order, "-o", "--order",
84  "Finite element order (polynomial degree) or -1 for"
85  " isoparametric space.");
86  args.AddOption(&static_cond, "-sc", "--static-condensation", "-no-sc",
87  "--no-static-condensation", "Enable static condensation.");
88  args.AddOption(&pa, "-pa", "--partial-assembly", "-no-pa",
89  "--no-partial-assembly", "Enable Partial Assembly.");
90  args.AddOption(&device_config, "-d", "--device",
91  "Device configuration string, see Device::Configure().");
92  args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
93  "--no-visualization",
94  "Enable or disable GLVis visualization.");
95  args.AddOption(&cali_config, "-p", "--caliper",
96  "Caliper configuration string.");
97  args.Parse();
98  if (!args.Good())
99  {
100  if (myid == 0)
101  {
102  args.PrintUsage(cout);
103  }
104  return 1;
105  }
106  if (myid == 0)
107  {
108  args.PrintOptions(cout);
109  }
110 
111  // 3. Enable hardware devices such as GPUs, and programming models such as
112  // CUDA, OCCA, RAJA and OpenMP based on command line options.
113  Device device(device_config);
114  if (myid == 0) { device.Print(); }
115 
116  // Caliper configuration
117  mgr.add(cali_config);
118  mgr.start();
119 
120  // 4. Read the (serial) mesh from the given mesh file on all processors. We
121  // can handle triangular, quadrilateral, tetrahedral, hexahedral, surface
122  // and volume meshes with the same code.
123  Mesh mesh(mesh_file, 1, 1);
124  int dim = mesh.Dimension();
125 
126  // 5. Refine the serial mesh on all processors to increase the resolution. In
127  // this example we do 'ref_levels' of uniform refinement. We choose
128  // 'ref_levels' to be the largest number that gives a final mesh with no
129  // more than 10,000 elements.
130  {
131  int ref_levels =
132  (int)floor(log(10000./mesh.GetNE())/log(2.)/dim);
133  for (int l = 0; l < ref_levels; l++)
134  {
135  mesh.UniformRefinement();
136  }
137  }
138 
139  // 6. Define a parallel mesh by a partitioning of the serial mesh. Refine
140  // this mesh further in parallel to increase the resolution. Once the
141  // parallel mesh is defined, the serial mesh can be deleted.
142  ParMesh pmesh(MPI_COMM_WORLD, mesh);
143  mesh.Clear();
144  {
145  int par_ref_levels = 2;
146  for (int l = 0; l < par_ref_levels; l++)
147  {
148  pmesh.UniformRefinement();
149  }
150  }
151 
152  // 7. Define a parallel finite element space on the parallel mesh. Here we
153  // use continuous Lagrange finite elements of the specified order. If
154  // order < 1, we instead use an isoparametric/isogeometric space.
156  bool delete_fec;
157  if (order > 0)
158  {
159  fec = new H1_FECollection(order, dim);
160  delete_fec = true;
161  }
162  else if (pmesh.GetNodes())
163  {
164  fec = pmesh.GetNodes()->OwnFEC();
165  delete_fec = false;
166  if (myid == 0)
167  {
168  cout << "Using isoparametric FEs: " << fec->Name() << endl;
169  }
170  }
171  else
172  {
173  fec = new H1_FECollection(order = 1, dim);
174  delete_fec = true;
175  }
176  ParFiniteElementSpace fespace(&pmesh, fec);
177  HYPRE_BigInt size = fespace.GlobalTrueVSize();
178  if (myid == 0)
179  {
180  cout << "Number of finite element unknowns: " << size << endl;
181  }
182 
183  // 8. Determine the list of true (i.e. parallel conforming) essential
184  // boundary dofs. In this example, the boundary conditions are defined
185  // by marking all the boundary attributes from the mesh as essential
186  // (Dirichlet) and converting them to a list of true dofs.
187  Array<int> ess_tdof_list;
188  if (pmesh.bdr_attributes.Size())
189  {
190  Array<int> ess_bdr(pmesh.bdr_attributes.Max());
191  ess_bdr = 1;
192  fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
193  }
194 
195  // 9. Set up the parallel linear form b(.) which corresponds to the
196  // right-hand side of the FEM linear system, which in this case is
197  // (1,phi_i) where phi_i are the basis functions in fespace.
198  MFEM_PERF_BEGIN("Set up the linear form");
199  ParLinearForm b(&fespace);
200  ConstantCoefficient one(1.0);
201  b.AddDomainIntegrator(new DomainLFIntegrator(one));
202  b.Assemble();
203  MFEM_PERF_END("Set up the linear form");
204 
205  // 10. Define the solution vector x as a parallel finite element grid function
206  // corresponding to fespace. Initialize x with initial guess of zero,
207  // which satisfies the boundary conditions.
208  ParGridFunction x(&fespace);
209  x = 0.0;
210 
211  // 11. Set up the parallel bilinear form a(.,.) on the finite element space
212  // corresponding to the Laplacian operator -Delta, by adding the Diffusion
213  // domain integrator.
214  MFEM_PERF_BEGIN("Set up the bilinear form");
215  ParBilinearForm a(&fespace);
216  if (pa) { a.SetAssemblyLevel(AssemblyLevel::PARTIAL); }
217  a.AddDomainIntegrator(new DiffusionIntegrator(one));
218 
219  // 12. Assemble the parallel bilinear form and the corresponding linear
220  // system, applying any necessary transformations such as: parallel
221  // assembly, eliminating boundary conditions, applying conforming
222  // constraints for non-conforming AMR, static condensation, etc.
223  if (static_cond) { a.EnableStaticCondensation(); }
224  a.Assemble();
225 
226  OperatorPtr A;
227  Vector B, X;
228  a.FormLinearSystem(ess_tdof_list, x, b, A, X, B);
229  MFEM_PERF_END("Set up the bilinear form");
230  // 13. Solve the linear system A X = B.
231  // * With full assembly, use the BoomerAMG preconditioner from hypre.
232  // * With partial assembly, use Jacobi smoothing, for now.
233  {
234  MFEM_PERF_SCOPE("Solve A X=B");
235  Solver *prec = NULL;
236  if (pa)
237  {
238  if (UsesTensorBasis(fespace))
239  {
240  prec = new OperatorJacobiSmoother(a, ess_tdof_list);
241  }
242  }
243  else
244  {
245  prec = new HypreBoomerAMG;
246  }
247  CGSolver cg(MPI_COMM_WORLD);
248  cg.SetRelTol(1e-12);
249  cg.SetMaxIter(2000);
250  cg.SetPrintLevel(1);
251  if (prec) { cg.SetPreconditioner(*prec); }
252  cg.SetOperator(*A);
253  cg.Mult(B, X);
254  delete prec;
255  }
256  // 14. Recover the parallel grid function corresponding to X. This is the
257  // local finite element solution on each processor.
258  a.RecoverFEMSolution(X, b, x);
259 
260  // 15. Save the refined mesh and the solution in parallel. This output can
261  // be viewed later using GLVis: "glvis -np <np> -m mesh -g sol".
262  MFEM_PERF_BEGIN("Save the results");
263  {
264  ostringstream mesh_name, sol_name;
265  mesh_name << "mesh." << setfill('0') << setw(6) << myid;
266  sol_name << "sol." << setfill('0') << setw(6) << myid;
267 
268  ofstream mesh_ofs(mesh_name.str().c_str());
269  mesh_ofs.precision(8);
270  pmesh.Print(mesh_ofs);
271 
272  ofstream sol_ofs(sol_name.str().c_str());
273  sol_ofs.precision(8);
274  x.Save(sol_ofs);
275  }
276  MFEM_PERF_END("Save the results");
277  // 16. Send the solution by socket to a GLVis server.
278  if (visualization)
279  {
280  char vishost[] = "localhost";
281  int visport = 19916;
282  socketstream sol_sock(vishost, visport);
283  sol_sock << "parallel " << num_procs << " " << myid << "\n";
284  sol_sock.precision(8);
285  sol_sock << "solution\n" << pmesh << x << flush;
286  }
287 
288  // 17. Free the used memory.
289  if (delete_fec)
290  {
291  delete fec;
292  }
293  // Flush output before MPI_finalize
294  mgr.flush();
295 
296  return 0;
297 }
Class for domain integration L(v) := (f, v)
Definition: lininteg.hpp:108
virtual void GetEssentialTrueDofs(const Array< int > &bdr_attr_is_ess, Array< int > &ess_tdof_list, int component=-1)
Definition: pfespace.cpp:1032
Conjugate gradient method.
Definition: solvers.hpp:493
A coefficient that is constant across space and time.
Definition: coefficient.hpp:84
void PrintOptions(std::ostream &out) const
Print the options.
Definition: optparser.cpp:324
int Dimension() const
Definition: mesh.hpp:1047
void PrintUsage(std::ostream &out) const
Print the usage message.
Definition: optparser.cpp:454
Pointer to an Operator of a specified type.
Definition: handle.hpp:33
virtual void Mult(const Vector &b, Vector &x) const
Operator application: y=A(x).
Definition: solvers.cpp:712
T Max() const
Find the maximal element in the array, using the comparison operator < for class T.
Definition: array.cpp:68
void Print(std::ostream &out=mfem::out)
Print the configuration of the MFEM virtual device object.
Definition: device.cpp:279
bool Good() const
Return true if the command line options were parsed successfully.
Definition: optparser.hpp:150
Abstract parallel finite element space.
Definition: pfespace.hpp:28
STL namespace.
bool UsesTensorBasis(const FiniteElementSpace &fes)
Return true if the mesh contains only one topology and the elements are tensor elements.
Definition: fespace.hpp:957
The BoomerAMG solver in hypre.
Definition: hypre.hpp:1590
Class for parallel linear form.
Definition: plinearform.hpp:26
virtual void SetPrintLevel(int print_lvl)
Legacy method to set the level of verbosity of the solver output.
Definition: solvers.cpp:71
void Parse()
Parse the command-line options. Note that this function expects all the options provided through the ...
Definition: optparser.cpp:151
constexpr char vishost[]
Jacobi smoothing for a given bilinear form (no matrix necessary).
Definition: solvers.hpp:302
double b
Definition: lissajous.cpp:42
void UniformRefinement(int i, const DSTable &, int *, int *, int *)
Definition: mesh.cpp:9878
constexpr int visport
void SetMaxIter(int max_it)
Definition: solvers.hpp:201
virtual const char * Name() const
Definition: fe_coll.hpp:73
HYPRE_BigInt GlobalTrueVSize() const
Definition: pfespace.hpp:285
Array< int > bdr_attributes
A list of all unique boundary attributes used by the Mesh.
Definition: mesh.hpp:275
void SetRelTol(double rtol)
Definition: solvers.hpp:199
Collection of finite elements from the same family in multiple dimensions. This class is used to matc...
Definition: fe_coll.hpp:26
void AddOption(bool *var, const char *enable_short_name, const char *enable_long_name, const char *disable_short_name, const char *disable_long_name, const char *description, bool required=false)
Add a boolean option and set &#39;var&#39; to receive the value. Enable/disable tags are used to set the bool...
Definition: optparser.hpp:82
HYPRE_Int HYPRE_BigInt
int main(int argc, char *argv[])
Definition: ex1p.cpp:69
virtual void Save(std::ostream &out) const
Definition: pgridfunc.cpp:873
int GetNE() const
Returns number of elements.
Definition: mesh.hpp:936
double a
Definition: lissajous.cpp:41
int dim
Definition: ex24.cpp:53
Class for parallel bilinear form.
int Size() const
Return the logical size of the array.
Definition: array.hpp:141
void Clear()
Clear the contents of the Mesh.
Definition: mesh.hpp:912
virtual void SetOperator(const Operator &op)
Also calls SetOperator for the preconditioner if there is one.
Definition: solvers.hpp:507
Vector data type.
Definition: vector.hpp:60
virtual void SetPreconditioner(Solver &pr)
This should be called before SetOperator.
Definition: solvers.cpp:173
Arbitrary order H1-conforming (continuous) finite elements.
Definition: fe_coll.hpp:252
void GetNodes(Vector &node_coord) const
Definition: mesh.cpp:7949
void Print(std::ostream &out=mfem::out) const override
Definition: pmesh.cpp:4839
Base class for solvers.
Definition: operator.hpp:682
Class for parallel grid function.
Definition: pgridfunc.hpp:32
The MFEM Device class abstracts hardware devices such as GPUs, as well as programming models such as ...
Definition: device.hpp:121
Class for parallel meshes.
Definition: pmesh.hpp:32